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PREFACE TO THE FIRST EDITION.

The present work is intended as an introductory text-book

for the use of Students reading for the Mathematical

Tripos. Many of the higher applications of the subject

are therefore either omitted entirely or treated very briefly.

At the same time the Author believes that the book in-

cludes as much as the great majority of Cambridge Students

have time to master thoroughly, while those who are

desirous of making farther acquaintance with the subject

will perhaps find a work like the present not unsuitable as

an introduction to the more complete treatises of Salmon

and others.

The Author besfs to thank those of his friends who have

kindly assisted him by revising the manuscript and proof-

sheets, and will feel obliged to any one who will offer cor-

rections or improvements.

Examples, selected chiefly from recent College and Uni-

versity Examination Papers, will be found at the end of each

Chapter.

Cambridge, August, 1865.
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SOLID GEOMETEY.

CHAPTER I.

INTRODUCTORY THEOREMS. '

1. The position of a point in space is usually deter-

mined by referring it to three planes meeting in a point.

This point is called the origin, the three planes the co-

ordinate planes, and their three lines of intersection the
co-ordinate axes. The point of intersection of the three

planes is usually designated by the letter 0, and their lines

of intersection by the letters Ox, Oy, Oz. They are called

the axes of x, y, and z respectively, and the planes yOz, zOx,
xOy are called the planes of yz, zx, xy respectively. If the
three planes of yz, zx, xy, and consequently the three lines

Ox, Oy, Oz, are at right angles to each other, the co-ordinates

are said to be rectangular, and in all other cases oblique. We
shall generally make use of rectangular co-ordinates, but in

some cases the proofs and the results obtained will hold good
equally whether the axes be at right angles or not.

2. The position of any point P relatively to these three

planes is known, if its distance from each, measured parallel

to the intersection of the other two, be known.

For let PH, PK, PL be draw^n through P parallel to

Ox, Oy, Oz respectively to meet the planes of yz, zx, xy in

H, K, L ; and let a plane through PL, PK, w^hich by Euclid, xi.

15, is parallel to the plane of yz, meet Ox in M. Let also a
plane through PH, PL meet Oy in N, and a plane through
PH, PK meet Oz in R. Then if KR, KM be joined, KMOR
is obviously a parallelogram, and KR therefore equal to OM.
Similarly RKPH is a parallelogram, and KR equal to PH.

A. G. 1



2 INTRODUCTOKY THEOREMS.

Hence PH is equal to OM, and similarly PL to OR, PK to

ON. If therefore we niqasure off from Ox, Oy, Oz, respec-

tively, ItjigthsfiMi Qlfy^QR equal to the given distances of

P from the, co-prdinate,planes, and through M, N, R draw

< e c « »

H

C '



IXTKODUCTORY THEOREMS,

the co-ordinates of any point indicate in which of these com-
partments it is situated, while their absolute magnitudes
indicate its position in that compartment. Thus the co-ordi-

nates of a point whose absolute distances from the co-ordinate

planes are a, y8, 7 are represented bv (a, ^, 7), [—a, /?, 7),
(a, -A 7), {a, A - 7), (a, -A - t), (- «. A -7), (- a, - jB, 7),

(— OL, — P, — 7), according as the point lies in the compart-
ment Oxyz, Ox'yz, Oxy'z, Oxyz, Oxy'z, Ox'yz , Ox'y'z, Oxy'z,
respectively.

4. To find the distance of a pointfrom the origin in terms

of its co-ordinates.

In this and Articles 5, 6 and 8 the co-ordinates are sup-

posed rectangular.

Let P be the point, x, y, z its co-ordinates. Through P
draw planes parallel to the co-ordinate planes and forming
with them a parallelepiped of which OP is the diagonal and
PL the edge through P parallel to Oz.

Join OP and OL. Then since PL is parallel to Oz which
is perpendicular to the plane of xy, PL is perpendicular to

the plane of xy, and therefore to the line OL which lies in

that plane. (Euclid, xi. Def. 3.)

Hence OP^ = OL' + PL'.

1—2
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INTRODUCTORY THEOREMS.

6. To find the distance between two points luJiose co-ordi-

nates are given.

Let P and Q be the two points ; x^, y^, z^\ x^, y^, z^ their

co-ordinates. Join PQ, and through P and Q draw planes

parallel to each of the co-ordinate planes, thus forming a

parallelepiped whose edges are parallel to the co-ordinate axes,

and are equal in length to x^ — x^, y^ — y^, z^ — z^, respectively.

As in Art. 4, we obtain

PQ^ = PH'' + HN^ + NQ^
= (^,-^,y4-(y,-y,y + (^,-^,)^ (4).

We have also formulse similar to those of equation (2),

o(, /3, 7 being the angles between PQ and the lines drawn
through P parallel to the axes, viz.

PH — x^ —x^ = PQ cos a = lr '\

PM=y^ — y^ = PQ cos /5 = mr> (5),

PL = ^2 ~ '^1 ^ ^Q' ^^^ 7 = nr J

where r represents the length of PQ, and I, 7n, n are the

direction-cosines of PQ.
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7. To find the co-ordinates of a point which divides the

straight line joining tiuo given points in a given ratio.

Let P, Q be the two given points, and R the point in PQ

which divides PQ in the given ratio of n^ to n^. Let x^, y^, z^

be the co-ordinates of P, ^'2, y^, z^ those of Q, x, y\ z those

of P.

Draw Pil/, P//, QK parallel to the axis of z to meet the

plane of xy in il/, Hy K. These points all lie in one straight

line, namely that in which a plane through PQ parallel to

the axis of z cuts the plane of xy. Draw PEF parallel to

MUK to meet RH in E and QK in F.

Then

Also

PM = z^, RII = z\ QK = '2'

n.RE PR
QF PQ 7^ + n/

z — z
or 1

n.

z — z
2 1

n, + n^

whence

n^z^-^7i^z^
X/ —

n^ + n,

Siniihirly it may be shewn that

i\ + n^ y
n, + n^
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If R be the middle point of PQ, n^ — n^, and we have

5j^ ._ 2/1 + 3/2

^ ~ 2 ' ^ ~ 2
/_^i+^2

8. To ^?icZ ^/le angle between Uuo straight lines whose

direction-cosines are given.

Since by Euclid, xi. 10, the angle between any two straight

lines is equal to that between any other two respectively

parallel to them, we need only consider the case of two lines

through the origin.

Let OP, OQ be the two lines ; I, m, n the direction-cosines

of OP; V, m, n those of OQ. Let x^, y^, z^, be the co-ordi-

nates of P any point in OP ; x^, y^, z^ those of Q any point

in OQ.

Then by Art. (6)

-p«'^=K-^ir+(2/2-2/j+(^2-^j'

=<

+

y" +< +< + y' + ^1' - 2 {x,x^ + y,y, + ^x^J-

But by Art. (4)

x:' + y: + z,'=OP\

x:+y:^z:=oQ\
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And by Art. (5)

x^=OP.l, y^ = OP.m, z^ = OP.n,

oc^=OQ. r, y^ = OQ. m, z^=OQ. n
;

and .-. x^x^ + y^y^ + z^z^ = 0P .OQ {W + mm + nn).

Hence PQ' = OP' + OQ' - 20P . OQ {W -f mm + nn').

But by Trigonometry we have from the triangle OPQ
PQ' = OP' + 0Q'-20P.0Q. cos POQ.

Comparing these two expressions for PQ', we get

cos POQ = ir + mm' +7in (6).

The formula3 (1), (3), (4) and (6) are of very frequent use,

and should be carefully remembered by the student.

From (G) we can deduce

sin'^ POQ = 1 - (W + mm + nnf

= {mil - VI nY + (/zZ' - nlf + (hi - l'm)\

9. If from the ends of a straight line PQ of limited

length there be drawn perpendiculars on a fixed plane and
the feet of these perpendiculars be joined by a straight line,

the joining line is called the projection of PQ on the plane.

Thus in the figure to Art. (6) if the edges LP, QN of the

parallelepiped PKQM be produced to meet the plane of xy
in y^ and F, EF is the projection oiPQ on the plane of xy, and
is equal and parallel to PN. Also

PN=PQcosQPN.
But QPN is ec[ual to the angle which PQ makes with the

plane of xy. Hence we derive the theorem :

The projection of a straigJit line of limited length on a
(jiven pUnie is equal to tJie length of the line multiplied by the

cosine of the angle between the line and plane.

If from the angular points of a triangle we draw perpen-
diculars on a fixed plane the feet of these perpendiculars form
a triangle whicli is called the projection of the given triangle

on the fixed plane.
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Let PQR be the triangle. Through R draw a plane RHS
parallel to the plane on which the projection is made.

Let PQ produced meet this j)lane in >S'. Draw PK per-

pendicular to RS, and PH and QL perpendicular to the

plane RHS. Then RHL is equal to the projection ofPQR on
the given plane.

Join HK, then it follows, from Euclid, xi. 8, that RS is

perpendicular to the plane PKH and therefore to KH.
Hence PKH is the angle between the plane PQR and the

plane on which the projection is made. Let this angle

be e.

Then

Similarly

Therefore

^HRB = iSR . HK
= iSR.PK cose

= APSR . cos e.

ARSL = AQSR . cos 6.

ARHL = APQR . cos 6.

Hence the lirojection of a triangular area on a fixed j^lctne

is equal to the area of the triangle multiplied hy the cosine of
the angle between the plane of the triangle and the fixed
plane.

The proposition can easily be extended to any plane area.
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10. If again from P and Q we draw perpendiculars on
some fixed line, the portion of the second line intercepted

between the feet of these perpendiculars is called the iwojec-
tion of PQ on the fixed line, and the following theorem holds

:

The projectio7i of a straiglit line of limited length on a
second straight line, is equal to the lengtli of the first line mid-
tiplied hy the cosine of the angle between the two lines ; under-
standing by the angle between two lines which do not meet, the

angle between any two lines parallel to them luhich do meet.

This theorem is proved as follows :

Let PQ be the line of limited length, and AB the line on
wliich it is to be projected. Through P draw PR parallel,

and PA perpendicular to AB. Through Q draw a plane
perpendicular to AB meeting AB in B, and PR in R. Join
QR, RB, BQ. Then AB is the projection of PQ, for AB is

perpendicular to QB which lies in the plane QBR. Then

since PR is parallel to AB, which is perpendicular to the
plane RBQ, J\R is also perpendicular to this plane and there-
fore perpendicular to QR and RB. Hence PRBA is a paral-
lelogram, and therefore AB = PR. But PR = PQ cos QPR,
since 1*R(^ is a right angle.

Therefore

AB = PQ cos QPR,

the theorem required.

11. If we take any two points, P, Q, and draw from P
in any direction a straight line PR of any length, from R
a straight line RS, and join ^Q ; and from P, R, S and Q
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draw perpendiculars PA, RG, SD, QB on AB ; AC, CD and
BB will be the projections of PR, RS and SQ on AB ; and
as long as A, C, D, B fall in the order represented in the

figure, the arithmetic sum of these projections is equal to

AB, the projection of PQ. The same would be true if we
had taken any number of lines between P and Q. If how-
ever C fall to the right of D, or C or D fall to the right of

A C D B

B or to the left of A, this will be no longer the case. We
may agree to consider the projection of a line to be equal

to its length multiplied by the cosine of the angle which
it makes with the second line, those angles being always

taken which are formed by the successive lines PR, RS, SQ
with AB towards the same part. Thus if D come to the

left of C, the angle between RS and AB will be obtuse, and
the projection of RS will be negative. And since

AC-CD + DB = AB,

we still have the theorem that " the algebraical sum of the

projections on a given line, of a series of lines by which lue

A DC
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pasfi from one point to a second, is equal to the j^'^ojection

on the same line, of the straight line joining the tiuo points.

This statement may be illustrated thus. Suppose a point

to move from P to Q along PR, RS, SQ, and from each

of its successive positions imagine a perpendicular let fall

on AB. As the point moves along PR, the foot of this

perpendicular will move along AB from A towards B, or

in the opposite direction, according as the angle between
PR and AB is acute or obtuse, and the length traversed

by it along AB in the projection of PR, and is positive if it

travels from A towards B, and negative if in the opposite

direction. It is clear that as the moving point passes from
P to Q, the foot of the perpendicular will pass from A to B,
and hence AB which is the projection of PQ will also be the
algebraical sum of the distances travelled by the foot of the

perpendicular, or of the projections of PR, RS, SQ. The
same theorem will be obviously true if instead of three lines

we have any number. By the angle between PR and AB
is meant the angle which would be formed if from any point
were drawn lines in the directions of PR and AB. Thus
the angle between PR and AB is the supplement of that
between RP and AB.

12. By means of the result of the last Article, another
proof of the formula (6) of Art. 8 can be obtained.
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If, in the figure of that Article, QN be drawn parallel

to the axis of z to meet the plane of oci/ in N, and jS3I drawn
parallel to Oy to meet Ox in M, it follows that the pro-

jection of OQ on OP is equal to the sum of the projections

of OM, J\m and A^Q on OP, that is, if 6 be the angle POQ,
and I, m, n ; V, m', n be the direction-cosines of OP and OQ
respectively,

OQ cos e = OM. I + MN . m + NQ. n

= OQ . r . I + OQ . m . m + OQ . n .n;

.
' . cos 6 = ir + mm + nn.

>^ 13. To find the distance of a j^oint from the origin luhen

the co-ordinates are oblique.

The formulae of Arts. 4, 5, 6 and 8 were obtained on the

supposition of rectangular co-ordinates. Let Ox, Oy, Oz be

oblique axes, and P any point. Through P draw planes

parallel to the co-ordinate planes to meet the axes in M,
N, R ; and join OP. The ratios of OM, OJSf and OR to OP

1

will be clearly the same whatever be the position of P, pro-

vided it lie in the same straight line through 0. These
ratios are called the direction-ratios of the line OP, and are

usually denoted by the letters I, in, n. We then get formulae-

corresponding to those of Alt. (5),

x = l.OP, y = m. OP, z = n. OP.
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Again, let X, yi, v be the angles between {Oy, Oz), (Oz, Ox),

(Ox, Oij). Then we have, if PL be the edge of the paral-

lelepiped through P parallel to Oz,

or = OM^ +MU - 20M . ML cos OML
= x^ -\-y'^ + 2xy cos v.

And OP" = OU + PL"" - 20L . PL cos OLP.

But the projection of OL on OR is equal to the sum of

the projections of 021 and ML on OR, or by Art. 9,

OL cos ROL = 03/ cos /^ + i/i^ cos \ = - OL cos OXP

;

and therefore

OP^ = a^ + y^ + 2:'^ + 2yz cos X + 2ja; cos fi + 2^^ cos i/.

Conibining this with the formulae x = l. OP, y =m. OP,
z = n . OP, we get

j

\ = l"^ + m^ + n^ -\- 2?nn cos X + 2nl cos //, + 2???i cos i^. . .(1),

the relation which holds between the direction-ratios of any
straight line.

In the same manner we could shew that the distance be-

tween two points x^y y^, z^; x^, y,^, z^ is

{x^ - x./ -h (y, - y/ + (z^ - zj +2(y^- y^) {z^ - z^) cos X

H- 2 {z^— z.) (x^ - x^) cos fi + 2 (x^ - x^) (y^
- y^ cos v.

And as in (8) that the cosine of the angle between two lines

whose direction-ratios are I, m, n ; I', m, n is

IV 4- mill + mi -f- {mil -\- mn) cos X
I -}- [nV + nl) cos fi + {Im + I'm) cos v...{2).

^5" 14. The volume of the parallelepiped of which OP is the

diagonal is evidently equal to the product of the area of the

1 parallelogram OMLN into the perpendicular from R on the

\ ])lane of xy. If 6 be the angle between OR and a line per-
' l)cndicular to the plane of xy, this volume would equal

OM . ON sin V X OR cos d

1 = xyz . sin v . cos 0.

IBut if /', m\ n be the direction-ratios of the line through
jH.'rpcndicular to the plane of xy, since it is perpendicular
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to Ox and Oy whose direction-ratios are (1, 0, 0), (0, 1, 0)

respectively, we have, by formula (2) of the last Article,

r + m cos V -\-n cos//. = (1),

r cos V + m^ -\- n cos \ = (2).

And since it makes an angle 6 with Oz whose direction-ratios

are (0, 0, 1) we have

n -\- r cos fjb + m'cosX = cos 6 (3).

From these, since by formula (1) of the last Article

r Q! + m cos V + n cos fju) + m (m + n cos \ + l' cos v)

+ n (n + t cos /M + mf cos X) = P + m'^ + n'^

* + 2mV cos X + 2nr cos //, + 21'mf cos v = l,

we have n cosO = 1 (4).

And from (1) and (2) we have

I m n

cos /t — COS X cos V COS X — cos fJL COS V cos^ z^ — 1

cos^ ,

=—2T-^ -i
—

;

2 s ^
=r ov (3),

cos X + cos yU, + COS V — Z COS X COS fJb COS l* — 1 " ^
^

whence we get

cos^ 6 sin^ V = 1 — cos^ X — cos^ //, — cos'^ z^ + 2 cos X cos /z cos z/.

And the volume of the parallelepiped becomes

xyz Jl — cos'^ X — cos''' /a — cos" v + 2 cos X . cos /^ . cos v.

The volume of the tetrahedron cut off from the co-ordi-

nate axes by a plane through R, M, N, is evidently one-sixth

of the above expression. -

15. The position of a point in space is sometimes de-

termined by means of polar co-ordinates. Thus if Ox, Oy,

Oz be rectangular axes and P any point, the position of P is

clearly determined if we know OP the distance of P from

the origin ; the angle POz which OP makes with a fixed

line the axis of z ; and thirdly, the angle between the plane

through OP and Oz and some fixed plane through Oz, as the



16 INTRODUCTORY THEOREMS.

plane of zx. These are called the polar co-ordinates of P
and are usually denoted by the letters r, 6, (p. They are

connected with the rectangular co-ordinates of P referred to

the axes Ox, Oy, Oz by very simple relations which can
be obtained thus. Draw FN parallel to Oz to meet the

l)lane of xy in iV, and NM parallel to Oy to meet Ox in M.
Join ON.

Then

X = 0M= ON cos cj) = OP sin 6 cos
<f)
= r sin 6 cos 0,

y =MN = ON sin </> = OP sin ^ sin <^ = r sin 6 sin (^,

z = PN= OP cos ^ = 7- cos 6>,

from which we can obtain the equivalent system

r^^x^^ y' 4- z^,

tan 6 = -^^^ ^

,

7/
tan = *

;

wliich give ?•, 6, </> in terms of x, y, z.
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EXAMPLES. CHAPTER I.

1. Find the distances between each pair of the points

' whose co-ordinates are (1, 2, 3), (2, 3, 4), (3, 4, 5) respectively.

2. Prove that the triangle formed by joining the three

points whose co-ordinates are (1, 2, 3), (2, 3, 1), (3, 1, 2)

respectively is an equilateral triangle.

3. The direction-cosines of a straight line are propor-

tional to 1, 2, 3 ; find their values.

4. The direction-cosines of a straight line are propor-

tional to 2, 3 and 6 ; find their values. Find also the angle

between this line and that in question (3).

5. Find the angle between two straight lines whose
direction-cosines are proportional to 1, 2, 3 and (5, —4, 1)

respectively.

6. A, B, G are three points on the axes of sc, y, z

respectively ; if OA = a, OB =h, 00 = c, find the co-ordi-

nates of the middle points of AB, BO and GA respectively.

7. In the last question find the co-ordinates of the

centre of gravity of the triangle ABO and the distances of

this point from A, B, respectively.

8. Shew that if D, E be the middle points of BO, CA in

the last question, J)JS = J BO.

9. Find the distance between two points in terms of their

polar co-ordinates.

10. The co-ordinates of a point are (JS, 1, 2 ^3) ; find

its polar co-ordinates.

11. The polar co-ordinates of a point are (4, ^ , ^j ;

find its rectangular co-ordinates.

A. G. 2



^ ^ CHAPTER 11.

THE STRAIGHT LIXE AND PLANE.

16. Before proceeding to find the equations of the

straight line and plane, we must examine the nature of the

locus represented by an equation of the form

F{x,y,z) = ^ (1).

Solving with respect to z we obtain

.z=f{x, y),

where z may have one or more values for each set of values

of X and y. Hence if we take any point in the plane of xy
whose co-ordinates are a, h we get one or more values of z,

that is, the straight line drawn through the point (a, h)

parallel to the axis of z will meet the locus in one or more
definite points. Hence the equation (1) must represent

a surface and not a solid figure.

Two equations

F, (x, y, z) = 0,

F, (^, y, z) = 0,

considered as simultaneous will be satisfied by the co-ordi-

nates of all the points of intersection of the two surfaces

^x ('^'> 2/> ^) = ^>

K (^> y> ^) = o>

that is, will represent a line.

The simplest line with which we are acquainted is the

straight line, and the simplest surface the plane. It would
perhaps be more logical to find the equation of the plane

first, and then, since any two planes intersect in a straight

J

]
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line, the equations of two planes considered as simultaneous

would represent a straight line. The equations of a straight

line can however be obtained most simply mthout reference

to that of a plane, and we shall therefore invert the ap-

parently natural order.

17. To find the equations of a straight line.

Let Z, m, n be the direction-cosines of the straight line,

a, fi, 7 the co-ordinates of some fixed point in it, and x, y, z

those of any other point in it. Also let r be the distance

between these points. Then by Art. (6) we have

a? — a = It, y — (B = mr, ^ — 7 = nr,

X— OL y — ^ Z — rj

or —
f-

=^—-= -=-r (1).

These are the symmetrical equations of a straight line.

li A,B,G \)Q any quantities which are proportional to I, m, n,

we can replace these equations by

x~ a _y — ^ _z— y
B G (2),

but these fractions are no longer equal to r. Conversely any
equations of the form (2) represent a straight line whose
direction-cosines are proportional to A, B, G. The values of

these direction-cosines can be found ; for supposing them to

be I, m, 71, we have

I _in _n _ jJP + m' -{-n^ _
A B G JA' + B' + G" JA' + B' + G''

The equations (2) can be also written thus

:

y^A^'^K^-AV^
G ( GG I G

Or writing

B ^ B G G
'j = m, fi--a=p, -j = n, y--Ta = q,

2—2
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2' = ""' +H (3),
z = nx -\- q)

which are the simplest forms of the equations of a straight

line, and useful in many cases. The student is however ad-

vised especially to attend to the forms (1) and (2).

The equations in (3) are those of planes drawn through

the line parallel to the axes of 2 and y respectively, the inter-

sections of which with the planes of xy and zx are the pro-

jections of the given line on those planes. (Art. 19.)

18. To find the equations of a straight line passing

through two given points.

Let a, y8, 7 ; a, /3', y be the co-ordinates of the two given

points.

By the last article the equations of any straight line

through (a, yS, 7) can be written in the form

x—a_y—^_z—y
I m n

(i).

But if the line also pass through the point (a', ^, 7) we
must have

a^^ff-l^j^^-y
t m n

Dividing each member of (1) by the corresponding mem-
ber of (2); we get as the equations required

x—a _y—^_z—y
i'^~/3^^~7^7"

19. To find the equation of a plane.

Let OD be drawn perpendicular on the plane from the
origin, and let the length of OD be p, and Z, m, n its direc-

tion-cosines. Let P be any point in the plane. Then since

OD is perpendicular to the plane it is perpendicular to PD.
Hence OD is the projection of OP on OD.

Draw PM parallel to Oz to meet the plane of xy in M,
and MN ])arallel to Oy to meet Ox in N. Then the projec-'

tion of OP on OD is the sum of the projections of ON, NM
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and MP on OD. But these are Ix, my, nz, respectively, and
the projection of OP on OD is p. Hence

Ix -\- my \-nz—p (1)

;

a relation which is satisfied by the co-ordinates of any point

in the plane, and therefore the equation of the plane.

If the plane is perpendicular to one of the co-ordinate

planes, as for instance that of xy, OD will lie in that plane,

and we have ?i = 0. Hence the equation in that case be-

comes
Ix + my =p (2),

and does not contain the variable 2.

If the plane is perpendicular to two of the co-ordinate

planes, as those of xy and zx, 1 = 1, m = 0, n = 0, and the

equation becomes
x = p (3).

These results are geometrically evident.

20. To find the equation of the plane in terms of its in-

tercepts on the axes.

This can be deduced from the equation (1) in the last

^lrticle, but may also be obtained independently thus.

Let the plane cut the axes m A, B, G; and let any plane

parallel to that of yz cut the co-ordinate planes of zx, xy in

n

^1
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the lines RN, NQ, and the given plane in RQ. Let P be

any point in RQ and therefore any point in the plane. Then
by Euclid, xi. 16, the lines RN, NQ, QR are parallel to the

lines CO, OB and BG, respectively. Draw PM parallel to

RJSr to meet QN in if.

Let 0]Sr=w, NM=y, MP = z, OA=a, OB = b, OG = c.

Then by similar triangles

Also

Hence

PM
RN
RN
CO

MQ^ NM
NQ NQ '

PM RN
XRN CO

PM MN
' CO'^ BO

AN_NQ
AO ~ BO'
AN_NM NQ
AO NQ ^ BO'
A^N _ _0N
A0~ AO'

X y z ^
or - + ^-+ =1,

a c
.(4).

21. All these forms of the equation of the plane are in-

cluded in the form

Ax + By + Cz = D (5).

Conversely we can shew that any equation of the form
(5) represents a plane.
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For let a, ^, y; a, ^', 7 be the co-ordinates of any two

points in the locus represented by (5). The equations of the

straight line joining these two points are

x-a _y-^ _z-y '

,.v

/ — /3' a ' \yj'
a —a p —p 7 — 7

But since (a, /3, 7), (a', /3', 7') lie on (5) we have

AoL + B^ + Gy = D,

Aoi + BjS'+ Cy = D.

Subtracting, A (a-a') +B{^ - /S') + (7

-

y) = 0.

And therefore by (6)

A (oj-a) + 5 (2/
- /3) + (^-7) = 0,

Avhere cc, y, z are the co-ordinates of any point in the line (6),

or Ax^By \Gz = AoL-\-B^-\-Gy = D.

Hence Xy y, z, the co-ordinates of any point in the line

(6), satisfy the equation of the locus. That is, if any two
points be taken in the locus of (5) and be joined by a straight

line, this straight line lies wholly in that locus. Therefore

the surface represented by (5) is a plane.

An equation of the form

Ax + By= D
represents a plane perpendicular to the plane of xy, and an
equation of the form

Ax = D
represents a plane perpendicular to the axis of x (Art. 19).

These are particular cases of (5), and may be obtained from
it by making first G to vanish, and secondly both B and G
to vanish.

22. To find the distance from the origin of the point

at which the plane (5) cuts the axis of x we must put y =

and z = 0. We thus obtain Ax = D 01c x = -7-\ or if thisA '

distance be called a, -j = ct. Similarly ^ = h, ^ = c ; and

substituting for A, B, G in (5) we get
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Dx By Dz ^

a c

X y z ^
or - + ^ + - =1, 4

a c ^

the equation found in Art. 20.

23. By Art. 19 it appears that every plane can be repre-

sented by an equation of the form

Ix + my -\-nz =p,
where I, m, n are the direction-cosines, and p the length, of

the perpendicular from the origin on the plane. But

Ax + By + Cz = D
represents a plane. Hence if these represent the same plane,

we have
I _m _ n _ p

Also r + m^ -\-n^ = ly

A
.'. 1 =

m

n =

and p =

JA'+B'+C'
B

jA' + B'-\-C''

G

JA' + B'+C'
D

JA^+WVC''
Thus the direction-cosines of the perpendicular from the

origin on the plane

Ax + By-^Gz = D
are proportional io A, B, G, and the length of the perpendi- (

cular is

JA' + B'+G''

24. The angle between any two planes whose equa-
tions are

Ax -\- By -^ Gz =^ D,

A'x^By-\-G'z==D\



THE STKATGHT LINE AND PLANE. 25

is the same as the angle between the perpendiculars on them
from the origin. But the direction-cosines of these perpen-

diculars are (Art. 23)

A ^B G

JA' + B'+C' JA'+B'+C' JA^ + B' +C
A' E a

JA'^^B"'+G"' JA'' + B"+C"' JA" + B" + G'^'

and the cosine of the angle between the planes is therefore

equal to

AA' + BB' + GG

JA' -{-B'+G' JA" + B" + G"
*

The condition that the two planes should be at right

angles is therefore

AA' 4- BB' + GG' = 0.

The conditions that they should be parallel may be

obtained by equating the cosine of the angle between them
to unity. It will be found that this leads to the con-

ditions

A^_B^_0^
A'~B'~G"

These may be also obtained independently from the con-

sideration that the direction-cosines of the perpendicular on

the one plane are proportional to A, B, G, and those of

the perpendicular on the other to A', B\ G' \ and if the

planes be parallel, and consequently the perpendiculars from

the origin on them coincident, we must have A, B, G pro-

portional to A', B', G', or

A^_B^_G
A'~ B'~ G"

25. The equation of a plane through a point {a, jS, <y)

parallel to the plane

Ax-{-By-]-Gz = D (1)

is easily seen to be

A{x-a)-{-B(y-^) + G{z-y)=0,
or Aa) + By + Gz = AoL-\~B^ + Gy (2).
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For this equation does represent a plane parallel to (1) by

the last article, and it is satisfied by the values

Now the length of the perpendicular from the origin on

the plane (1)

B

and the length of the perpendicular from the origin on the

plane (2) is similarly

^
Aa -^ BI3 {- Cry

jA'-hB'-^-C
'

The difference of these, or

(Aa+B^ + Cy)~D

is the length of the perpendicular from the point (a, y8, 7) on
the plane (1).

If we take the equation of the plane in the form

Ix + my -\-nz —p = Oy

the numerical value of the length of the perpendicular from
any point {x, y, z) on this plane is

± {Ix + my + nz —p).

It is easily seen that the expression

Ix + my + nz — p
is positive if the point {x, y, z) is on the opposite side of the !

plane from the origin, and negative when the point (x, y, z)

is on the same side of the plane as the origin. If the ex-

pression be denoted by a, the length of the perpendicular
from any point on the plane

a =
is -I- a or - a, according as the point and the origin are on
the same or opposite sides of the plane.

2G. If we take four planes forming a tetrahedron whose
ccjuations are

a = 0, y8 = 0, 7 = 0, 8 = 0,
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all expressed in the form

Ix + my + nz —p = 0,

any other plane may be represented by the equation

la. + m/3 + ny + qB = 0.

For this represents some plane, being of the first degree in

X, y, z, and since it contains three arbitrary constants, namely,

the ratios of three of the quantities I, m, n, q to the fourth,

it may be made to satisfy three conditions, and may therefore

be made to represent any plane.

This method of representing planes may be developed in

a similar manner to that used for straight lines in Plane Co-
ordinate Geometry (Todhunter's Conic Sections, Chap. iv.).

Thus the equations of the two planes bisecting the angles

between the planes a = 0, /3 = 0, will be

a-l3 = and a+/3 = 0,

the former bisecting that angle within which the origin lies,

and the latter the supplementary angle.

Any equation which is not homogeneous in a, /3, y, 8, can
be rendered so by means of the relation ,

Aa-\-Bfi + Gy-^DS = -SV,
\

where V is the volume of the tetrahedron, and A, B, G, D
the areas of its faces. This equation merely states that the

algebraic sum of the four tetrahedra whose vertices are at the

point (a, /5, 7, h) is equal to the fundamental tetrahedron.
,

27. If a straight line

x-a _ y-P ^ z-y
A ~ B G ^ '

is parallel or perpendicular to a plane

A'x + Fy-^G'z^D (2),

it is perpendicular or parallel respectively to the perpen-
dicular on that plane, whose direction-cosines are proportional

to A', B\ G'.

The condition that (1) may be parallel to (2) is therefore

AA' + BB'^-GG'=0,
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and the conditions that (1) may be perpendicular to (2) are

A_B^G
A'~ B'~ C"

28. It is often requisite to know the length of the per-

pendicular on a given straight line from a given point.

Let the equations of the straight line be

x-a _ y-(B ^z-^
A ~ B G~ ^ ^'

and let a', jS', y' be the co-ordinates of the given point.

The equation of any plane through (a', /S', 7') is

\(x-a') + fi(y-^') + p(z-y') = (2).

If this plane be perpendicular to (1) we have

\ _/jb _v
A^B~G'

and its equation becomes

A{x-a')-\-B(ij-0')-\-C{z-y) = O (3).

The point where this plane meets the line (1) is evidently i

the foot of the perpendicular from (a', y8', 7') on (I).

Let then P be the point {a, (3, 7), F the point (a
,
13', 7 ),

P'

a

JS

and Q the foot of the perpendicular from P' on the line (1);
therefore PQ is the perpendicular from P on the plane (3),

]
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and we have PQ=
Ja^+B'^ + C^

'

and P'Q^ = PF^-PQ^ by the right-angled triangle P'QP',

.-. P'Q^ = (a - a!f + (/S - ^')' + (7 " iJ

A' + B' + C"

29. I\? yl?^cZ ^/le conditions that a straight line may lie

wholly in a given jjlane.

"^-'^/-'-^ «
be the equations of the line,

A'x + B\j-\-C'2 = D (2)

the equation of the plane.

Put each of the fractions in (1) equal to k.

Therefore

a) = a+ Ak, y = ^ + Bk, z = y + Gk,

and if the line (1) lies wholly in (2), these values of x, y, z

must satisfy (2) whatever be the value of k. Hence the

equation

J.'a + B^ + (7'ry - D + ^AA' + BB + CC) k = 0,

must be satisfied independently of k. This gives us the two
conditions

A'a + B'l3-{-G'y-D = 0,

AA' + BB' + (7(7' = 0.

The first of these equations denotes that the point (a, ft 7)
lies in the plane (2), and the second that the angle between
the line (1) and the perpendicular on the plane (2) is a

right angle. These are evidently necessary and sufficient

conditions.

30. To find the shortest distarice between tiuo straight

lines whose equations are given.

We must first prove that the shortest line between two

1
1 given straight lines is perpendicular to each of them.
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Let BC, ^D be the two straight lines, and AB a line

perpendicular to each of them. Then AB is clearly shorter

than the line joining A with any other point of BC, and

also than the line joining B with any other point of AD.
Let P be any point in AD, and Q any point in BC. Then

j

P

D

PA and QB are both perpendicular to AB, and therefore AB
is the projection of PQ on AB, and is equal to the length

of PQ multiplied by the cosine of the angle between them,

and is therefore less than PQ, since the cosine of any angle

is less than unity.— =^_^.i-
a).

x-a _y-^' _ z-r^'

A' B a ^ ^'

be the equations of the two straight lines. Let the equation

of any plane through (1) be

P(^-a) + a(y-/3) + -K(2-7) = (3).

Then we have, since (3) contains (1),

PA + QB + RC=0 (4).

And if we take the plane through (1) to be also parallel

to (2), we have
PA'+QB'+RC' = (5).

From (4) and (;")) we have

P _ Q ^ R
BC'-HC CA'-G'A AB'-A'B'
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The equation of a plane through (1) parallel to (2) is

therefore i I

{BC-B'C){x-a)+{GA'-C'A)(y-l3)+{AB'-A'B)(z-ry)=0{6).

Similarly the equation of a plane through (2) parallel to

{Ba-B'C)(w-oL')+{CA'-C'A)(7j-l3')+{AB'-A'B){z-Y)=0 (7).

The length of the perpendicular from the origin on (6) is

(BC - FG) a + {GA' - C'A) jS + (AB - A'B) y

J(BC' -B'Cy + iGA' -G'Ay + {AB' -A'B)' '

and the length of the perpendicular on (7) is

(
BG' - B'G) d + {GA' - G'A) ^' + jAB' - A'B) y'

J{BG' - B'Gf + {GA' - G'Af + {AB - A'Bf

The difference of these, or

{BG'- BG) {a-a!) + {GA'- G'A) i/S-jS') + {AB- A'B) (7-7

)

J(BG'- BG)' + (GA'- G'Af -f {AB - A'Bf

is clearly the perpendicular distance between the two given

lines.

The equations of the line AB can be obtained by finding

the equations of two planes, one of which contains the straight

line BG and is perpendicular to the plane (6), and the other

contains the line AD and is perpendicular to the same plane.

Each of these planes evidently contains the straight line AB,
and their equations considered as simultaneous determine the

line. The requisite conditions for the two planes will be

found in Articles 24 and 29.

31. To find the condition that two straight lines whose

equations are given may intersect.

Let the equations of the straight lines be

x-cL _ y-^ ^ z-yA'B G ^^'

A' " B ~ G' ^
^•

d
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Then if they intersect, a plane can be made to pass through

both of them. Let this plane be

Since this contains the line (1) we have, by Art. 29,

Pa + Q^-]-Ry = D (3),

PA +QB + RC=0 (4).

And since it contains the line (2) we have

Pot'+ Qff + Ry' = I) (5),

PA' + QB' + Ra = (6).

From (3) and (5) we have

P {a -a') + Q(/3 - ^') +R {y-'y') = (7).

And eliminating P, Q, R from (4), (6) and (7) we get with

the usual notation of determinants,ABC
A' E C

a /3-0 7-7a

= 0,

or

(0L-a)(BC'-B'C)-\-{^-l3') (CA'-C'A)-\-(iy-y') (AB'-A'B)=0.

A result which might have been obtained from the last

article by the consideration that if two straight lines intersect

their shortest distance vanishes.

If the two straight lines be given by the equations

Ax + Bi/ + Cz = D)
A'x-^B'y + C'z = D\
Px + Qy + Rz = S

P'a, + Q'y + R'r; = S'

the condition of intersection is obtained from the considera-

tion that these four ecjuations must be able to be satisfied

by the same values of x, y, z. The condition for this is

A B G D

.(8),

(9),

A' B'
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-^ 32. To find the equation of a plane passing through three

given points and the volume of a tetrahedron whose angular
points are given.

Let x^, y^, z^; ^^,y^,z^\ ^z^ Vz^ ^^ be the co-ordinates of

the given points, and let

Ax + By + Cz = D
be the equation of the plane passing through them.

We must have therefore

Ax^ -} %, + Cz^-D = 0,

Ax^ + By^ + 0^, - D = 0,

Ax^^By^-^Gz^-D = 0,

and if x, y, z be the co-ordinates of any point in the plane,

we have also

Ax + By^-Gz-D = 0.

From these four equations, eliminating A, B, C, D, we
obtain

= (1),

which when expanded is the equation required.

If the three points be P, Q, R, and S be any fourth point

whose co-ordinates are x^, y^, z^, the volume of the tetra-

hedron PQRS is one-third of the product of the area of the

triangle PQB, into the length of the perpendicular from S
I

on the plane PQR.

The coefficients of x, y, z in the determinant in (1), by a

well-known formula of plane co-ordinate geometry, are equal

to double the projections of the area of PQR on the planes of

yz, zx and xy, that is if A, //, p be the direction-cosines of the

perpendicular on (1) and the area of PQR be represented

by A,

2XA = A, 2fjLA = B, 2vA = C,

since the area of the projection of a plane figure on a second
plane is obtained by multiplying by the cosine of the angle

between the planes (Art. 9).

A. G. 3

X
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Hence, squaring and adding,

But if j; be the perpendicular from x^, y^, z^ on the plane

PQR,
Ax, + By,+ Cz^-D

Hence the volume of the tetrahedron required which

= +
6

^4
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3. Find the equations of the sides of the triangle formed

by joining the points (1, 2, 3), (3, 2, 1), (2, 3, 1). Deduce the
' values of the angles of the triangle.

*y 4. Find the equation of the plane which passes through

the three points in the last question, and the length of the

perpendicular on it from the origin.

5. Find the ecjuations of a straight line which passes

through the point (1, 2, 3), and is perpendicular to the plane

X -\- 2y + Sz = 6.

6. Find the equations of a straight line which passes

through the point (1, 2, 3), and is perpendicular to the two
straight lines in questions (1) and (2).

7. Find the equation of a plane passing through two
given points and perpendicular to a given plane.

8. Find the equations of a straight line passing through
' the point (1, 2, 3) and parallel to the plane in question (4)

and to the plane of xi/.

9. Find the equation of a plane passing through the

point (2, 3, 4) and the straight line in question (1).

10. Find the equations of a straight line drawn from

the origin of co-ordinates at right angles to one given straight

line, and making a given angle with another. If the given

.straight lines be at right angles to each other and the given

angle be j , shew that there are two solutions, and that the

two straight lines so found are at right angles to each other.

11. Find the equation of a plane which passes through

a given point, and is perpendicular to each of two given

planes.

12. Shew that the equation of a plane in oblique co-

ordinates can be put in the form

X cos a + 2/ cos ^ -{- z cos y = p,

where p is the length of the perpendicular on the plane from

the origin, and a, /S, y the angles which it makes with the

axes.

3—2
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18. Shew that if ct, /5, 7 be the angles between any

straight line and the axes of co-ordinates, I, m, n the direc-

tion-ratios of the line, and X, /-t, v have the meanings given

in Art. 13,

cos 0L = l +m cos v + n cos ji,

cos 13 = '>n + n cos \ + l cos v,

cos y = n-\- 1 cos /jl -\- m cos \.

14. Deduce the conditions that in oblique co-ordinates

the straicrht line

X _ y _z
I 111 n

ma}'' be perpendicular to the plane

Ax + By \-Gz = D.

15. Shew that the locus of a point which moves so as

always to be equidistant from two given points, is a plane

which bisects at right angles the straight line joining the two
points.

16. What loci are rej)resented by each of the equations

fix) = ; /(r) = 0; f{e) = 0; /(^) = 0;

where r, 6, </> are the usual polar co-ordinates ?

17. Interpret the equations :

[6 = a,
^^^ |(^

= 0,

\r =a.
(1) ^ = 0; (2) 1^^^^ (3)

18. Find the polar equation of a plane.

19. Find the angle between the two lines given by

o A r T£.( (1)» and x = y=z (2).
fix -h 4fy -^ 5z = 12] ^

^ -^ ^
^

20. Three planes are at perpendicular distances p^yJ^^^Ps
from the origin ; three planes are drawn through the lines of

intersection of any two perpendicular to the third ; shew that

the last three planes will intersect in a straight line passing

through the origin if

2\ cos A =p,^ cos B=p^ cos C,

where A, B, C are the angles between the first three planes.
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21. Shew that through two given points (a, h, c), (a, b\ c),

two planes may be drawn cutting olf from the axes intercepts

whose sum is zero ; and these two planes will be at right

angles to each other if

1 1 1 n
, + T r, + > = 0.

a — a — c — c

22. Find the cosine of the angle between the two straight

lines represented by

3 5 8^
+ - =0.

y — 2 z — x sc — y

23. Find the condition that the two straight lines whose

direction-cosines are given by the equations

Al + Bm-\-Cn = 0,

may be at right angles to each other.

24. If the co-ordinates of four points be a — b, a — c,

a- d ; h — c, b — d, b — a
',

c — d, c — a, b — b ; d — a, d — b,

d — c, respectively, prove that the straight line joining the

middle points of any two opposite edges of the tetrahedron

formed by joining the points, will pass through the origin.

25. Shew analytically that the least distance between
two straight lines is perpendicular to each of them.

26. The shortest distance between the lines

x-cL_ y-l3 _z-y x-a _y-fi' _ z-y
b m n L m n

intersects the latter in the point whose co-ordinates are

a + V cosec^ 6 (lo + u cos 6),

and two similar expressions where is the angle between the

lines and
11 = I {a'- a) + m (/3' -(3)+ n (y - 7),

u' = l'{a- a!) + m' (^ - p') + n (7 - 7).
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27. Prove that the straight lines joining the middle

points of opposite edges of a tetrahedron all meet in a point

and bisect one another.

28. If X, y be the lengths of two of the straight lines

joining the middle points of opposite edges of a tetrahedron,

CO the angle between these lines, and a, a those edges of the

tetrahedron which are not met by either of the lines, prove

that

cos ft) =
2 '2

a ~ a

4txy

29. Find the shortest distance between the diagonal of

a cube and any edge which it does not meet.

30. Find the area of the triangle formed by joining the

three points where the plane

X y z ^

+ f + - = 1
a c

cuts the axes.

31. From the origin are drawn three equal straight lines

of length p, such that the inclinations of the first to the axes

of Xy y, z respectively, are the same as those of the second to

y, z, X, and of the third to z, x^ y. A plane is drawn perpen-
dicular to each of them through its extremity. Find the co-

ordinates of the point of intersection of these three planes

and the equations of the line joining it with the origin.

32. A straight line is drawn from the oricjin to meet
I • •

the straight line

X — a _y — b z — c

I m n

at right angles. Shew that its equations are

X - x__
a — It h — Dit c — nt*

^ ^ al-h hm -I- C7i
where t = -,^— ., , .
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33. Shew that by a proper choice of axes the equations

of any two straight lines can be put in the forms

z = c, y = mx ; z = — c, y — — inx.

34. If the co-ordinates of the points {x, y, z) and (f, 77, f)

be connected by the equations

f^^ i = y. i=^
y ^

' 7 z ' y z'

where c and 7 are given lines ; shew that if (x, y, z) be a
point in a straight line whose direction-cosines are I, m, n,

and which cuts the plane of xy at a point (a, h, 0), then (f, 77, 5")

will be a point in a straight line whose direction-cosines are

X, ya, V, and which cuts the plane of ^r] in the point (a, /S, 0),

where
a = lh, (3 = mS, 7 = nS,

a = \d, h = fjid, c = vd,

d being the distance of the point (0, 0, c) from the point

(a, b, 0), and 8 that of (0, 0, 7) from (a, /S, 0). Shew also that

if the lengths of the two lines from the points where they

cut the planes of xy and ^r] respectively be r and p,

rp = dS.

35. Prove that the four planes my + nz = 0, nz +lx = 0,

Ix -\- my = 0, Ix -\- my + nz = p, form a tetrahedron whose

volume is ,, .

oimn



CHAPTER III.

ON CERTAIN SURFACES OF THE SECOND ORDER.

33. We have shewn that the general equation of the

first degree represents a plane. Before proceeding to the

discussion of the general equation of the second degree, we
shall find the equations of certain special surfaces included in

the class represented by the equation of the second degree. I

The Sphere.

A sphere is a surface every point of luliich is at a constant

distance from a fixed point called the centre The constant

distance is called the radius.

Let a, h, c be the co-ordinates of the centre, r the radius,

00, y, z the co-ordinates of any point on the surface. Then
the distance of the point {x, y, z) from the centre is equal to

J^x-af-\-{y-hr+{z-c)\

But this distance must equal the radius r. Hence for all

points on the surface

J{x - af + (3/
- by -h (2 - cy = r,

or (^j,.ay-\-iy-by + {,-cy=r' (1),

which is the equation required.

Conversely any equation of the form

w' + y^ -^z'^Ax-\- By ^Cz + D =

represents a sphere. For it can be put into the form

(

,
A\' t B\' ' CV A' + B' + C „
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and, comparing this with (1), we see that it represents a

sphere whose centre is at a point (— ^~ , — ^ , —^j and whose

radius is

yA' -^-B' + C _ ^

;
34. The Cone.

A cone is a surface generated by a straight line which al-

ways passes through a fixed point called the vertex, and through

a fixed curve.

We shall only discuss in this and the next Article the

case when the fixed curve is a plane curve of the second

degree.

Take the plane of the curve as the plane of xy, and let

the equation of the curve be

Ax'' -\- Cy'' + Ex = (1),

to which form the equation of any conic section can be re-

duced ; and let a, /3, 7 be the co-ordinates of the vertex.

The equations of any straight line through the vertex are

—r-= —- =—- (2);
I fa n

when this meets the plane of xy we have ^ = 0, and therefore

I m

These values of x and y must satisfy the equation (1),

since the line always passes through some point in the curve

represented by (1). Hence we have

or, multiplying by v^,

A {noL - lyf -f C (72/3 - rnyf + En {noL - ly) = 0.

|i
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This is a relation which must be satisfied by I, m, n if the

straight line (2) meet the curve (1). But if {x, y, z) be any

point in (2) we have

Z _ 771 _ 11

X — a y — [S z — 'y'

Consequently, if (x, y, z) be any point in any straight line

joining (a, y5, 7) with some point of the curve (1), we must
have

+ ^ (^ - 7) {a (^ - 7) - 7 (^ - a)l = ;

or reducing,

A {oLZ - r^xy+ C {0z - yyy+ E (z - 7) (2^ - 7^) = 0. . .(3),

which is therefore the equation of the cone.

If we transfer the origin to the point (a, /3, 7) we must
put

x = X -\- :i, y = y' + 0, z = z + 7,

and the equation becomes

A {iz - yxj + C {fiz - yy'Y + Ez (iz - yx') = 0,

of which every term is of the second degree in x, y\ z . The
equation of a cone of the second degree whose vertex is at

the origin is therefore homogeneous. Conversely every homo-
geneous equation of the second degree represents a cone
whose vertex is at the origin. For let

Fx'^ + Qy" + Uz' + Fyz + ^zx + Kxy = (4),

be the equation. And let x^,y^, z^ be the co-ordinates of any
point on the locus. Then the equations of the straight line

joining {x^, y^, z^ with the origin are

^ = ^=£ (5).
^1 Vx ^1

But, since {x^, y^, z^ is a point in (4),

and therefore by (5), if {x, y, z) be any point in (5),

7V + Qy' + Rz" -f Fyz + Qzx + R'xy = 0.
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Hence every point on the straight line joining the origin with

(x^, y^, z^ lies on the surface. Thus, the surface is generated

by a straight line which always passes through the origin, and

is therefore a cone.

35. The Cylinder.

A cylinder is a surface generated by a straight line which

aliuays passes through a fixed curve and remains parallel to

itself.

Let the plane of the curve be taken as the plane of xy,

and let its equation be

Ax' ->r Cy'' -{ Ex = Q (1).

Also let Z, m, n be the direction-cosines of the straight

line to which the generating line always continues parallel.

Let 7, yS, be the co-ordinates of the point in the curve (1)

through which any generating line passes. The equations of

this line will therefore be

x-a^y-£^._
C in n

Iz ^ mz
n "^ n

But a, yS are the co-ordinates of some point in (1), and
therefore we have by substitution

or A (nx - Izf + C (ny - mzf + nE {nx — lz) = (3),

which, being a relation satisfied by the co-ordinates of any
point in any one of the generating lines, is the equation of

the surface.

36. The Ellipsoid.

The ellipsoid is a surface generated by a variable ellipse

luhich ahuays moves parallel to itself, and has its vertices on
tiuo ellipses tuhose planes are perpendicular to each other and
to the plane of the moving ellipse, and which have one axis

common.



44 ON CERTAIN SURFACES

Let the planes of the fixed ellipses be taken as the planes

of zx and xy, and the direction of their common axis as the

>w'
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Whence substituting in (1)

c^
'^

h' a'
'

a he ^ ^

If the two semi -axes 00 and OB be equal, it can be

seen from (2) and (3) that MR and MS are also equal.

Now an ellipse Avhose axes are equal is a circle. Hence
the surface in this case would be generated by the revo-

lution of the ellipse BOA round OA, and its equation

becomes

a^"^ h'

The surface is called an oblate or prolate spheroid ac-

cording as the semi-axis a is less or greater than h. If

all the three semi-axes OA, OB, OC he equal, the equation

becomes
w +y + z = a",

which shews that the surface in that case becomes a sphere

whose centre is at 0. 'hts^*^^^^

37. The Hyi^erholoid of one Sheet. lu^^c/L •»-

The hyjjerholoid of one sheet is generated hy a variable

ellipse luhich moves parallel to itself and has its vertices on

two hyperbolas luhose planes are peiyendicidar to each other

and to the plane of the nfioving ellipse, and which have a com-

mon conjugate axis.

Let AQ he one hyperbola in the plane of zx, BR the

other in the plane of yz, and RPQ any position of the

moving ellipse, RM and QM its semi-axes, and P any point

on it. Let OA=a, OB = b, and OC, the common conju-

gate semi-axis, = c. Draw PJV parallel to MR to meet
I MQ in K Let OM = z, MN = x, NP = y. Then from the

ellipse RPQ,
2 2

"^ ~+ =1
MR' ' MQ'
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from the hyperbola AQ,
iW
a

= 1 +

IT D2

from the hyperbola BR, —j-^ = 1 +

,2 5

,2 )

or 1,

the equation required.

38. The Hyperholoid of tu'o Sheets.

This is generated as the last surface except that the

hyperbolas have a common transverse aais.

Take the direction of the common axis as axis of x, the

planes of the hyperbolas as the planes of zx, xy, and the

plane of yz parallel to that of the moving ellipse. Let

OA = a be the common transverse semi-axis, and OB = h,

OC = c, the two conjugate semi-axes. Let QPR be any
position of the moving ellipse, J\IQ, MR its semi-axes, and
P any point in it. Draw FN parallel to Q2I to meet
RM in iV.
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Let OM = ^, M]Sr= y, NP = z.

From the ellipse QFR, ^^^ + ^^,

from the hyperbola AQ,, —^ = —^ — 1^

= 1,

C

from the hyperbola AR, ,.^ = -^ — 1

;

6^
"^

c^
~

a^ '

or
^

d'
7,2 ^2 -•^J

,the equation required.

These three surfaces, the ellipsoid, the hyperboloid of one
sheet, and the hyperboloid of two sheets, are all included in
'he equation

Ax^ + By"" + Cz' = 1.

39. The Elliptic Paraboloid.

The elliptic paraboloid is generated by a parabola which
.noves with its vertex in a fixed parabola, the planes of the two
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parabolas being at right angles, their axes jmrallel, and their

concavities turned in the same direction.

Take the plane of the fixed parabola as j^lane of xy, its i

vertex as origin, and its axis as axis of x. Then the plane of

the moving parabola is parallel to that of £x.

Let PQ be any position of the moving parabola, P any
point in it, I' its latus rectum, and let Z be the latus rectum
of the fixed parabola. Draw PM parallel to O2 to meet the

axis of the moving parabola in 31, and draw QH and MN
parallel to the axis of y.

Then from the parabola PQ,

P3P = z' = r. QM,

and from the parabola QO,

QH' = f = 1 . OH =lx-l . QM

. / ^'_
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40. The Hyperbolic Paraboloid.

This is generated in the same manner as the last sur-

face except that the concavities are turned in opposite

directions.

Let OQ be the fixed parabola in the plane of xy, PQ any

position of the moving parabola parallel to the plane of zx,

P any point in it. Draw P3I parallel to O2, MN and QH
parallel to Oy. Let I and I' be the latera recta of the two
parabolas OQ, PQ.

From the parabola PQ,

PM' = z' = V . QM,

I

rom the parabola OQ,

QH^=^f = l.OH
= l.{x + QM)

— ox -{•

J,
',

• 'J. rp

"I l'~

The two paraboloids are both included in the equation

Bf + Gz' = x,

A. G. 4
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We shall shew hereafter that any equation of the second

degree in x, y, z can be reduced to that of one of the surfaces

whose equations we have considered in this chapter.

41. Asymptotic surfaces.

The equation of the hyperboloid of one sheet is

—+^--=1 m
which can be put into the form

c
~ U' ^7 V aY + h'xV

where the remaining terms contain higher powers of

ay + ^^^^ ill the denominator.

Hence, if we increase x or y, or both, indefinitely, the

value of z approaches indefinitely near to

And if we construct the surface

Z^ 01? v^

6'^~^''^¥ ^^^'

(which by Art. 84 represents a cone whose vertex is the

origin), the ordinate of this surface parallel to Oz, corre-

sponding to any given values of x and y, approaches indefi-

nitely near to equality with the ordinate of the hyperboloid

corresponding to the same values of x and y, when these

values are increased indefinitely; that is, the cone (2) is

asymptotic to the hyperboloid.

Similarly the cone whose equation is

is asymptotic to the surface

x'

a'
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42. The equation of the hyperbolic paraboloid is

2 2

\-7-^ W;

/I /, l'x\i

\

=±yj^(i+^.+...)

Now if z be increased indefinitely and x be not very large,

the second and all the succeeding terms of the series on the

: right will diminish indefinitely. Hence the equations

y =±J> (2).

' represent two planes which are asymptotic to the surface (1)

at points for which y and z are increased indefinitely while x
remains finite.

EXAMPLES. CHAPTER III.

1. Find the polar equation of a sphere, any point not the

centre being the pole. Shew that if through a fixed point

any chord OPQ be drawn meeting a sphere in P and Q, the

rectangle OP . OQ is invariable.

2. From any point a straight line is drawn to meet a

given plane in P. In OP a point Q is taken so that the rect-

angle OP . OQ is equal to a given constant F. Find the

locus of Q.

3. From any point a straight line is drawn to meet a

given sphere in P. In OP a point Q is taken so that the

rectangle OP .OQ is equal to a given constant F. Find the

locus of Q.

4—2
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4. Shew that if through any point of a sphere a plane

be drawn perpendicular to the straight line joining the

centre with that point, the plane will only meet the sphere

in that one point.

5. A and B are two fixed points, P a point which moves
so that FA is to FB in a constant ratio. Find the locus

of P.

6. A and B are two fixed points, P a point which moves
so that the angle AFB is a right angle. Find the locus

of P.

7. Find the surface generated by the line of intersection

of two planes which pass each through a fixed straight line

and are at right angles to each other.

8. Shew that all the points of intersection of two spheres

lie on a circle whose plane is perpendicular to the straight

line joining the centres of the spheres.

9. About three fixed points as centres, spheres are

described having variable radii which are always in the same
ratio to each other. Shew that they always intersect two
and two on three fixed spheres, and that these three spheres

have one circle common.

10. Prove that the planes of the three circles in which
three spheres intersect each other two and two, all intersect

in a straight line which is perpendicular to the plane con-
taining the centres of the three spheres.

11. Prove that the six planes of intersection of four

spheres two and two have one point common to them all.

12. Sliew that if each of six equal spheres intersects all

the rest but one, so that the radii at the line of intersection

are inclined at GO'', the portion of space common to all will

have eight solid angles coinciding with those of a cube whose

side is . of the diameter of the sphere.
v/l8

^

l.S. A straiglit line moves so that three given points of it

lie respectively in three planes at right angles to each other.

I
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Shew that a fourth point in the straight line, whose distances

from the other three are respectively a, b, c, traces out an

ellipsoid.

14. The two straight lines

£c ±a _^ ±y _ z

cos a sm a

! meet the axis of x in 0, 0', and P, F' are points on the two
lines such that OF . O'F' = c^ ; shew that the surface traced

[out by the straight line FF' is the hyperboloid

x^ 1? z^
^ u = 1

I a c cos a c sm a

P, F' being taken on the same side of the plane xy,

15. Find the surface generated by a straight line which
' revolves round a fixed straight line which it does not meet.

16. Find the surface which is the locus of the family of

curves defined by the equations

0^ -\r y^ -^ z^ = d^ and ^/^ + / = r^a^ — c^

where a is a variable parameter and c an absolute constant

;

and discuss its form for different values of n.

17. A perpendicular FN is let fall from a point P in a
right cone on a plane through the vertex perpendicular to

the axis, and a point P' is taken in FN or FN produced
such that FN . FN is constant. Find the locus of P'. \y^



CHAPTER IV.

\f^\ TRANSFORMATION OF CO-ORDINATES.

43. Many of the equations which we shall have occasion

to employ will be much simplified by a proper choice of axes.

It is necessary therefore to investigate the relations which

hold between the co-ordinates of any point when referred to

two different sets of axes.

The simplest case is that in w^iich the directions of the

two sets of axes are identical, the origin only being different.

Let X, y, z be the co-ordinates of P referred to the old set %
of axes ; x

, y, z , the co-ordinates of the same point referred

to the new set. Let a, ^, 7 be the co-ordinates of the new
oriofin referred to the old axes. Then the distance of P from

the old plane of yz is equal to the distance of P from the

new plane of yz together with the distance between these

two planes, or

x = x' -\- a.

Similarly y = y-^^>

z = z +'y.

These results will hold whether the axes be oblique or

rectangular.

44. To find the co-ordinates of a jyoint P referred to one

set of rectangidar axes, in terms of the co-ordinates of the

same point referred to another set of axes, also rectangidar,

with the same origin.

Let Ox, Oy, Oz be the old axes ; Ox, Oy, Oz the new.

Let x, y, z be the co-ordinates of P referred to the old axes

;
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x\ y\ z the co-ordinates of the same point referred to the

i new axes. Let l^, m^, n^ be the direction-cosines of Ox' re-

ferred to Ox, Oy, Oz\ l^, m^, n^ those of Oy, and l^, m^, n^

those of Oz.

Through P draw PM parallel to Oz to meet the plane
Oxy' in M, and through M draw MN parallel to Oy to meet
Ox in N. Then ON = x, NM= y', MP = z'

.

Also the projection of OP on Ox \^ x. And the projec-

tions of ON, NM, MP on Ox are \x\ l^y , l^z, respectively,

since \, l^, l^ are the cosines of the angles between Ox and
ON, NM and MP, respectively. But the projection of OP
on any straight line is equal to the sum of the projections of

ON, NM and MP on the same line. Hence

X = l^x + l^y' + I/.

Similarly by projecting on the lines Oy and Oz we get

y = m^x + m^y -V m^z

,

z = n^x + n^y + n^z\

The nine quantities l^, m,, n^, l^, m^, n^, l^, m^, n^ are not
independent, but are connected by six relations. For since
l^, m^, Tij are the direction-cosines of Ox, we have

Similarly Z/ + m./ -\-nJ^ = 1,

«/ +< +< = !•
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Also the cosine of the angle between Oy and Oz is equal

to l,Jl^-\-m^m^-\-n^n^\ but this angle being a right angle, its

cosine is equal to zero

;

.'. Lk + mjii, + nji, = 0.

Similarly

"2"3 2 3

^3^^ + m^m^ + n^n^ = 0,

These relations may be replaced by the six equations

i: +v +c =1.

< +< +^V = 1,

nj^ ^-nj.^ +nj^ =0,

l^m^ + l^m^ -f /gWg = 0.

These equations can be algebraically deduced from the

previous set, but they can be more easily proved independ-

ently thus

:

Zj, TTij, n^ are the cosines of the angles between Ox and
Ox^ Oy, Oz; l^, m,^, n„ those of the angles between Oy' and
Ox, Oy, Oz; and l^, m^, n^ of the angles between Oz and Ox,

Oy, Oz. Consequently \, l^, l^ are the cosines of the angles

between Ox and Ox, Oy, Oz ; m,, m^, m^ those of the angles

between Oy and Ox, Oy, Oz; and 7i^, n^, n^ those of the angles

between Oz and Ox, Oy' , Oz . Considering Ox, Oy , Oz as

axes, and remembering that Ox, Oy, Oz are mutually at right

angles, we obtain the above formulae at once.

45. The formulae given in the last Article are extremely
useful, and from their symmetrical character are easy to re-

member. They are liable to the objection that nine con-
stants are introduced of which six are superfluous, and other
formulae have been proposed which employ only three con-
stants.

Let Ox, Oy, Oz be the old axes ; Ox! , Oy', Oz the new
ones. Let the plane of x'y' cut the plane of xy in Ox^, and
let a plane through Oz and Oz, which is therefore by Euclid,

XI. 18, perpendicular to the planes of xy and xy\ cut these

planes in Oy^, Oy^, respectively.
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Then since Oz is perpendicular to the plane of xy it is

perpendicular to Ox^, and since Oz is perpendicular to the

plane of x'y', it also is perpendicular ' to Ox^. Hence Ox^ is

perpendicular to the lines Oz and Oz\ and is therefore per-

pendicular to the plane in which they lie, and therefore

perpendicular to Oy^, Oy^. Hence by Euclid, xi. Def. 6, the

angle yfiy^ is the angle between the planes of xy and x'y

.

Let this angle be called 6, and let the angle between Ox
and Ox^ be called </>, and the angle between Ox^ and Ox be
called -v/r.

' Let X, y, z be the co-ordinates of any point P referred to

the axes Ox, Oy, Oz. Then if we take Ox^, Oy^, and Oz as

axes, the ordinate z will be unaltered, and if x^
, y^ be the new

co-ordinates parallel to Ox^, Oy^, we have by the ordinary

formulse of transformation in plane co-ordinates,

x = x^ cos
<i>
— y^ sin <^,

y = x^ sin </) +
3/i

cos
(f>.

Again, if we take Ox^, Oy^, Oz as axes, the x^ will be un-
altered, and if y^, z be the new co-ordinates parallel to Oy^,
^Jz\ we have

Vx = 2/2 *^^s Q - z sin 0,

z =
2/2 sin ^ -I- z cos 6.
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And lastly, taking Ox , Oy, Oz as axes, the z will be un-

altered, and we get

x^ = X cos '^ — y' sin yjr,

2/2
= x' sin yjr + y' cos ^fr.

And, making the substitutions for x^^y^^y^, we get finally

x=-x' (cos ^ cos -v^r — sin (^ sin -v^r cos &)

— y (sin -v/r cos (/> + cos ^ cos a/t sin c^) + z sin <^ sin ^,

y = x' (sin cos i/r -|- cos c^ sin ^/r cos 6)

— y (sin (^ sin \/r — cos </> cos i/r cos ^) — z sin ^ cos (/>,

2r = a?' sin ^/r sin 6 + y' cos i/r sin ^ + / cos 6.

These are called Euler's Formulae. They are useful in

discussing the nature of the sections of surfaces, but their

unsym metrical character renders them difficult to remember.

46. If we wish to change both the origin and the direc-

tion of the axes we have only to combine the formulae of

Arts. 43 and 44. For changing the origin to a point whose

co-ordinates are a, ^, 7, and keeping the direction of the axes

unchanged, we get x = x^-\- a, y = y^-\- /S, z = z^ + y. And
then changing the directions of the axes we get

^, = l,x + l^y -\- 1/,

or a; = l^x + l^y' + l^z + ^.

Similarly y = m^x 4- m^y' + 7n^z' + y8,

z = n^x + n^y' + n^z -\- 7.

47. The formulae for transformation of co-ordinates in

Art. 44 hold also when the axes are oblique if l^, ?7i,, ?z, denote

the direction-ratios of the new axis of x with respect to the

old axes. The six relations which bold between the nine

constants involved, which can be obtained from Art. 13, are

in general very cumbrous.

48. A proof exactly similar to that given in Todhunter's

Conic Sections, Art. 87, will shew that the degree of any ex-

pression involving x, y, z is unaltered by transformation of

co-ordinates.
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49. The following proposition is useful in many ques-
tions of transformation of co-ordinates.

The condition that the expression

Ax^ -f Bf + Cz' + 2A'yz + 2B'zx -}- ^Cxy (1)

should be the product of two linear expressions in x, y, z, is

ABC + lA'B'C - AA" - BB" - CO" = 0.

For if one of the factors be

Xx -{- fiy -\- vz (2),

it is evident, by considering the coefficients of x\ y^ and z"^ in

(1), that the other factor must beABC
x^'^jLy^'v' (^>-

Multiplying (2) by (3) and equating the coefficients of yz,

zx and xy in the product, to those of the same terms in (1)

we have

B--\-C^ = 2A\
/Jb V

C-+A^ = 2B',
V \

A^-\-B^=2C\

whence by multiplication we get

2 2\
' \2 i!\

SA'B'C = 2ABC + A iB'^- + C'^j +B [C^ +A--
^,

= 2ABC+A{^A'^-2BC) + B {4<B"-2CA) + C(4<C"-2AB),

or transposing and dividing by 4,

2A'B'C' -f- ABC - AA''- BB"' - CC = 0.

The expression 2A'B'C + ABC - AA' - BB" - CC" is

called the discriminant of the expression (1).
•

•
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50. It is evident that in any transformation of co-ordi-

nates from one set of axes to another, the origin being un-

changed, the expression x^ + y^ -\- z^ will be transformed into

x"^ + y"^ + z"^ if both sets of axes be rectangular ; or the ex-

pression

a? + y' + -2"^ + ^yz cos \ + ^zx cos ya -f- ^xy cos V

will be transformed into

x"^ + y"^ + z"^ + ^yz cos X'
-H ^z'x cos yu + ^x!y cos i/'

if the axes are oblique, the expressions in each case repre-

senting the square of the distance of the point whose co-

ordinates are considered, from the common origin.

Thus if the axes are rectangular, and the expression

Ax"" + Bif + a/ H- "lA'yz + Wzx -h "IG'xy (1)

become by transformation

Fx"" + qy"" + Rz' + 2P'2/V -h 2Q'^V + "LBlxy'. .
. (2)

;

we shall have also the expression

Aa? -h By" + Gz"^ 2A'ijz + 2B'zx + 2C'xy - X (x'+ y'+ /). . .(3),

where \ is any constant, transformed into

P^"+ Qy"-^ Rz"'-\- 2Fyz^ 2Q'zx+ 2Rxy-\{x"+y-'-\-z^)

.

, .(4).

But if, for any values of X the expression (3) be the pro-

duct of two linear expressions in x, y, z, the expression (4)

must, for the same values of X, be the product of the two
expressions in x

, y\ z into which the former two would be
reduced by the transformation. Hence the discriminant of

(3) is identical with that of (4), or the two equations

(^i -X){B- X) {C -X)- A'\A - X) - B\B - X) - C (C - X)

-^2A'B'C' = (5),

(P -X)(Q- X) {R - X) - P" (P - X) - (r{Q - X) - R' {R- X)

\-2F'Q'R' = (6),

are identical, and satisfied by the same values of X. Thus
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the coefficients of the different powers of X in these equations
must be equal, and we have

A+B + C = P + Q + R,

BG+CA+AB- A" - B" - C"

= QR + RP + PQ-r'-Q"'-E'\ y (7).

ABC + 2A'BV' - AA" - BB' - CC"
= PQR + 2P'Q'R' ~PP''- QQ" - RR'\

The expressions on the left-hand side of the equations

'J) are called invariants of the expression (1).

51. As a particular case of the foregoing, let us suppose
if possible, as it will be proved to be hereafter, that the ex-

pression (1) is transformed into an expression of the form

The equation (6) then becomes

(P - X) (Q - X) {R-X) = 0,

md the roots of this equation are P, Q, R, the coefficients of

' ", y~, z'^ in the transformed expression. These coefficients

ire therefore the roots of the equation (5) with w^hich (6) is

dentical, namely,

A -X){B- X)(C-\)- A'\A -\)- B'\B - X) - G'\G

-

X)

-f 2A'B'G' = 0.

A.nother proof of this result will be given hereafter (Art. 86).

EXAMPLES. CHAPTER IV.

1. The co-ordinates of a point are (1, 2, 3). Find its co-

)rdinates relative to new axes whose equations are x — y — z\

Ix = — y = 2z ; X = — z, y = i).

2. Transform the expression xy + yz + zx to the new
ixes in the last question.
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3. Shew that x^ -\- y"^ -\- z^ + yz + zx -\- xy can be reduced
by transformation of co-ordinates to the form

A (x' + y'') + Bz\

4. From the formulae in Art. 44 prove that

5. Find the values of P, Q, R when the expression

x^ + y"^ + z"^ — 4*xy — 4tyz — 4!zx

is transformed into the form Px^ + Qf/'^ + Pz'^.

6. Shew that if the expression

Ax" + By' + Cz' + 2A'yz + 2B'zx + 2C'xy

be transformed into Px' + Qy'^ + i^/^ where the first axes
are inclined at angles X, /n, v, and the new axes are

rectangular, P, Q, R will be the values of k given by the
cubic equation

(A-k){B-k)(C-k)-(A'-kcosXy{A-k)
- (F - k cos ^if {B - k) -(C'-k cos vf (C - k)

+ 2{A' -k cos X) {B' - k cos ^) {C - k cos v) = 0.

7. Prove that the equation

Jx + Vy -\- Jz =

represents a cone of revolution round the line

x = y = z,

whose semi-vertical angle is cot~^ J2.



CHAPTER V.

ox GEXERATIXG LIXES AXD SECTIOXS OF QUADRICS.

52. We have seen (Arts. 34, 35) that the cone and
!? cylinder admit of being generated by the motion of a
straight Hne. This is also the case with the hyperboloid

of one sheet and with the hyperbolic paraboloid, but not

with any other surfaces whose equations are of the second

degree in ^, y, z.

Surfaces whose equations are of the second degree in

{x, y, z) are called Quadrics, or, following the analogy of the
' terms ellipsoid, &c., Conicoids.

53. On the generating lines of the hyperboloid of one

sheet.

The equation of the hyperboloid of one sheet is

or ^-^ = 1-1 .. m
This equation is satisfied by all values of x, y, z which

satisfy either of the pairs of equations

X _z_ / _y\^
a c~^\ bj

X z 1 /_ y\
\- + - = - 1 + fa c fM\ bJ J

X z ( ^ y\
or =yu, 1 + fa c \ b)

a' c fjb\ bj

(2),

(3).
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whatever be the vahie of ^. Each of these pairs represents a

straight line. There are thus two systems of straight lines

lying wholly on the surface. We shall first prove that all

the straight lines of one system intersect all the straight

lines of the other; and secondly, that no two lines of the

same system intersect one another.

54. The equations of any two straight lines of opposite

systems are

1X z
- + -

a c -I
(1).

a

X

c

z

hi

a c fi'\ h,

(2).

And if the straight lines represented by these equations

meet, these four equations must be satisfied by the same
values of x, y, z. But the four equations are all satisfied

if we take

X z _
a c

= M 1-

X 2 _1
a c fjb

1 +

y

and /Lt'

From which we obtain

i.|) = .

h.
(3).

1-m/
(4).

y fJ^
—

fJ'' X _1 -^ /xfji' z

b fjb-\- fji" a ii-\- fx ^ c /^ + /^'

Hence any two generating lines of opposite systems meet
in a point.

Conversely, through any point of a hyperboloid of one

sheet two straight lines can be drawn lying wholly on the

surface. For if we assume the co-ordinates of the point to

be X, y, z; from equations (3) we can determine /j, and /x',
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and therefore the equations of the two generating lines

through the point in question.

55. Secondly, no two lines of the same system intersect.

For let their equations be

a c \ b

- + - = - 1 + ^

y,

a i

X z 1 f^ \f- + - = - 1 + f

,

From the first and third we get by subtraction,

(^-/.')(l-f) = 0;

Itherefore /^ = Z^'?
o^ 2/ = ^•

From the second and fourth we get by subtraction,

y1 + f =0

.*. fJb = fJb', or y = — h.

Hence since we cannot have y equal both to b and — b we
joaust have /jl = fjf, or the lines must coincide. Therefore no
5W0 lines of the same system intersect.

oQ. The equation of the Hyperbolic paraboloid is

y z

I r~^'

^hich will be satisfied by all values of Xy y, z^ which satisfy

jdther of the pairs of equations

Jl Jl

A. G.
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Jl

X 1
or -,_ r- = -

Jl' f^

y ^

Hence in this case also there are two systems of straight

lines lying wholly on the surface. A proof similar to that of

the last two articles will shew that all the straight lines of

one system intersect all those of the other, and that no two
straight lines of the same system intersect one another.

It may be noticed that from the form of the second equa-
tion in each set, it follows that all the lines of each system
are parallel to a fixed plane.

57. We have shewn in the preceding articles that the

h3r[3erboloid of one sheet and the hyperbolic paraboloid ad-

mit of rectilinear generators ; we shall now shew that these

are the only surfaces among those which we have considered,

besides the cone and cylinder, with which this is the case.

Let us first take the equation

Aw' + Bif -\- Cz' = 1 (1),

which includes the ellipsoid and the two hyperboloids ; and
if possible let the line whose equations are

~ir-~^~~^~' ^^^'

lie wholly on the surface (1).

From (2),

X = Oi-\- Ir, y = (3 -h mr, z = y -{- nr
;

and if the straight line (2) lies wholly on (1) the equation

A{oL + Irf -\-B{^+ mrf + C (7 + mf = 1

must be satisfied for all values of r.

The conditions for this are

Ah-\-Bmfi+Cny =0
Al' + Bm' +6V =0

.(3),

.(4),

.(5).

The first of these equations merely expresses the condi-,
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tion that the point (a, (3, 7) may lie on the surface. The
second and third are the conditions which I, m, n must
satisfy. They will in general give two values for the rati(^

I : m : n. It remains to examine whether these values are

real or not.

From (4) we have

^ AloL + BmB
(Jn = .

7
Substituting in (5) we get

CAiy + CBmy + (^^a + Bm^f = 0,

which is a quadratic in —

.

•

m
The roots of this quadratic will be possible or impossible

according as

(ACy' + A'ol'XBGj' + B'/3') < or > A'B'a'^\

or as ABCy + A'BGdy + B'AG/Sy < or > 0,

or as ABGy' {A a' + B/3' + Gy') < or > 0,

or as ABG < or > 0.

Hence that the generating lines may be real we must
have ABG a negative quantity; thus one or three of the
quantities A, B, G must be negative. If they are all three

negative, the surface is impossible, so that the only possible

surface is the hyperboloid of one sheet in which one is nega-

tive. In this case we may take11 1

and the equations which determine the directions of the

generating lines are

loL m/S 7iy _

58. It may be noticed that since for either of the gene-

rating lines we have

Aloi + BmP + Gny = 0,

5—2
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and for any point in either line we have

x — aL_y — IB_z — y
I m n '

we must also have the equation

AoL {x-a) + BP (3/- /3) + Cy{z - 7) = 0,

satisfied for any point in either of the straight lines through

the point (a, y&, 7). But this is the equation of a plane

:

it is therefore the equation of the plane containing the two

straight lines.

The equation can be ^vritten

Aax + B(3y + Gyz = Ao? + B^'+ (77' = 1,

and it may be noticed that whether the lines themselves be

real or not, this plane is a real plane. We shall prove here-

after that it is the tangent plane to the surface at any point

(«, A 7)-

59. The equation of the projection of either line on the

plane of xy is

x—a_y—^
I Til

'

or 2/
= -ya; + /3--ya (1),

Z
*^

' ^
I

m
the values of -j being deduced from the quadratic equation

given in Art. 57.

AV (Cy + Aa') + 2ABa0 Im + Bm"" (Cy' + Bl3') = 0,

or AP (1 - B/3') + 2AB2^ Im + Biiv" (1 - Aol^) = ;

.-. AV + Brn^ = AB {1/3 - may.

Hence the equation (1) can be written

_m /l 1 m^

which is a w^cll-known form of the equation of the tangent
to the curve

Ax'-hBy' = l.
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But this curve is the ellipse in which the given surface is

cut by the plane of xy. Hence the projections of the gene-
rating lines on the plane of xy are tangents to the curve in

which the surface is cut by that plane.

The same is true for the planes of yz and zx.

60. The equations of the two paraboloids are both in-

cluded in the equation

Bf+G2^=:X (1).

The conditions that a straight line

^-g ^ 2/-^ ^ ^-7 /g)

I in n

should lie wholly on the surface (1) are found by a process

similar to that of Art. 57 to be

B^' + Grf = a (3),

Bm' -\- Gre == (4),

25^^ + 2(7717-^ = (5).

The first equation indicates that the point (a, /3, 7) lies

on the surface (1). The second and third give the values

of the ratios I : m : n. These values will be real if B and G
have opposite signs, so that the surface must be the hyper-

bolic paraboloid.

61. The equation of the projection of one of the gene-

rating lines on the plane of xy is

2/
= j^ + (^P- jaj (6).

But from (5)

(25m/3 - ly = 4^C'ny

= — 4>BGy^m^ from (4)

;

.-. 4>Bm' {BP' + Crf) - 4<Blm0 +l' = 0',

.'. ^Bm\ - 4<Blml3 + 1^ = from (3)

;

or Ip — moL = -7-r» •
— •
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And the equation (6) becomes

_ m 11

a well-known form of the equation of the tangent to the

curve By^ = x. i

Hence the projection of the generating line on the plane
if

of 007/ is a tangent to the curve in which that plane is cut by
the surface. A similar proof holds for the projection on the

plane of zx.

The equation of the projection on the plane of yz is

in n '

or 2/
= -^ +^--7 (7).

But JBm''+Cn' = 0- .'.- = + a/- ^, \

n \ B
and the equation (7) becomes

4̂

Hence the projections of the generating lines on the

plane of yz are parallel to the two straight lines in which
the surface is cut by that plane.

G2. The sections of the ellipsoid

(X^ v^ z^

made by planes parallel to either of the co-ordinate planes

are ellipses. For taking the equation of a plane parallel to

that of a:y to be

^ = 7 (2).

we get for the points where this meets (1)
2 2 S

^ 4- 'C - 1 _ :l
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This is the equation of the projection of the curve of

section on the plane of xy. But since the cutting plane is

parallel to the plane of xy^ the projection of the curve of

section on that plane is equal and similar to the curve itself.

"i Hence this curve is an ellipse. And it may be noticed that

this ellipse is always similar to the ellipse —
2 + t2 = 1j iii

which the surface is cut by the plane of xy.

In a similar manner the sections by planes parallel to the
other co-ordinate planes may be shewn to be ellipses.

The sections of the hyperboloid of one sheet

x^ y^ / ^

2 T^ 7 2 2 *>
a b c

by planes parallel to that of xy are ellipses, and those by
planes parallel to the planes of yz or zx are hyperbolas.

The sections of the hyperboloid of two sheets

2 2 2

a' If & '

by planes parallel to those of zx or xy are hyperbolas, and
by planes parallel to that of yz are ellipses, which are im-
possible if the value of x for points in the cutting plane is

numerically less than a.

The sections of the two paraboloids

f ^_

" __ /yi

by planes parallel to those of zx or xy are parabolas whose

latera recta are r and I respectively.

Their sections by planes parallel to that of yz are

respectively ellipses and hyperbolas, the former being impos-

sible when the cutting plane is to the left of the origin.

To find the nature of the sections of these surfaces by
planes not parallel to the co-ordinate planes it is no longer
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'IV

sufficient to find the equations of the projections of the curve

of section on the co-ordinate planes, since the projection vdW
not in general be similar to the curve itself The simplest

method is to transform the co-ordinates so that the plane

of xy shall be parallel to the cutting plane, and then the

nature of the section will be given as above by its projection

on the plane of ocy. For this transformation the formulae

of Art. 45 are very useful. We may in general avoid the

third substitution, and since we wish to find merely the nature
of the sections by planes parallel to that of xy, which we
shall prove in the next article to be always similar to the
section by the plane of x'y' itself, we may before substitu-

tion put z' = 0. The required substitutions will then be
derived from the formulae in Art. 45 by putting yjr = and
z' = 0. We thus get '

x = x COS
<f>
— y' cos 6 sin </>,

y = x sin ^ -\- y' cos 6 cos </>,

z =y sin 6.

If the equation of the cutting plane be given in the form

Ix -f my \-nz=p, we have tan 6 =
, and cos 6 = n. Them

above substitutions then become

_ mx' -f- Iny _ mny — Ix

where we assume that F + m^ + n^ = 1.

^
63. We shall first prove the following general propo-

sition.

All sections of surfaces of the second order made by
parallel jylanes are swiilar and similarly situated.

Take the plane of xy parallel to the system of cutting
planes. The equation of the surface can be put into the form

Aa^ -f By'' + Cz"" + 2A'yz + 2B'zx + 20'xy

+ 2A"x+2B"y + 2C"z -f F= (1).

The curve in which this is cut by the plane

^ = 7 (2),
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is given by the equation

Ax' + By' + 2C'xy + (2^V + ^^") ^ + (2^7 + 25") y

And whatever be the value of 7 this curve is always

similar and similarly situated to the curve

Ax'^ + Bf + ^G'xy + ^A"x -f ^B"y + i^= 0,

in which the surface is cut by the plane of xy.

Hence in discussing the form of the sections of surfaces

jby a series of planes, we need only consider planes through

the origin.

This method will not fail even if the curve of section by
a plane through the origin become impossible, since the

terms of the second degree in the equation of this curve are

the same as in the equations of the possible curves formed

by the intersection of parallel planes with the surface.

64. We shall consider first the equation

Ax'-^By''+Gz' = \,

which includes the three central surfaces.

Making the substitutions suggested in Art. 62, we get as

the equation of the curve of section

x' {A cos^^ + B sin^^) + 2xy (5 — ^) cos <^ sin <^ cos 6

+ y' {A cos'(9 sin'^c/) + B cos'^' cos'0 + G sin'(9) = 1.

And the section will therefore be an ellipse or hyperbola

according as

B — AJ cos-6 cos^cf) sin^<^

- (A cos'</) + B sin'(j)) (A cos'<9 sin'c^ + B cos-6' cos'^ + Csin'^^')

is negative or positive. This expression can be reduced to

the form

- {BGsin'e sin'0 + GA sin'O cos'cf> + AB cos'6>}.

In the case of the ellipsoid A, B and G are all positive,

md this expression is therefore always negative. All sec-

ions of the ellipsoid are therefore ellipses. The investigation

)f the nature of the sections in the other surfaces is long and
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the results uninteresting, except in the particular case in

which the section becomes a circle.
I

The conditions that this may be the case are, that the co-

efficient of xy should vanish and the coefficients of x"^ and
y- should be equal. We have therefore

{B — A) cos Q sin cos (/> = 0,

A cos^cj) + B sin^^ = A cos^6 sin^<^ + B cos^^ cos^<^ + C sin^d.

From the first equation we must have either B=A, in

which case it is already obvious that all sections parallel to

the plane of xy are circles, or

cos . sin
(f)

. cos (j> = 0.

If cos 6 = 0, we have 6 = 90*^, and the second equation gives

A cos^^ + B sin^(/) = G=C (cos^</) + sin^</))
;

^ , 2 f ^ — A
. . xan u) — "^ p^

,

and if the values of tan (p be real, we get circular sections by
two planes through the axis of z.

If we take cos (/> = ; we have cp = 90^ or the plane

passes through the axis of y, and the second condition gives

B = Acos'e+Gsm'e;

A — B
and therefore tan'^^ = -n _ p ,

and if the values of tan 6 be real, we get circular sections by
planes through the axis of y.

Similarly from the condition sin (j) = 0, we get circular

sections by planes through the axis of x inclined to the

plane of xy at angles given by the equation A|

tan"" 6 = p^^A •

In all cases the circular sections are made by planes

passing through one of the axes. It only remains to examine
|

in what cases they are real.
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Only one of the three quantities

C-A A-B A-B
B-C B-C C^A

can be positive, consequently there are only two real central

circular sections, and they pass through the axis of 2, y or x,

iccording as the first, second, or third of these expressions is

positive.

(1) In the ellipsoid A, B, G are all positive, and if we
take them in order of magnitude, the second of the above

expressions is positive. Consequently the central circular

sections of an ellipsoid are made by planes through the mean
axis.

(2) In the hyperboloid of one sheet G is negative, and
if we suppose A>B, it is again the second of the above ex-

pressions that is positive, and the circular section is made by
a plane through the greater real axis, since

A-^ B = ^

'and A being > B, a <b.

(3) In the hyperboloid of two sheets, B and G are

aegative, and if we suppose B numerically greater than C,

or b<c, B — G wdll be negative, the first of the above ex-

pressions is positive, and the circular section is made by a

plane through the greater impossible axis.

65. We have shewn in the last article that the onli/

planes which give circular sections of central quadrics are

certain planes through one of the axes. It is easy to shew
without transformation that these planes do give circular

sections.

Thus the equation of the ellipsoid can be written in the
form

or

[c a
) \c a )
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which shews that either of the planes

-JW^' --J^r^' = (1),
c d

or i^5^IV + -7^^^^=0 (2),
c a ^ ^

cuts the ellipsoid in the same points in which it cuts the]

sphere

But every plane section of a sphere is a circle. Henceff
the planes (1) and (2) and consequently by Art. 63 all planes]

parallel to them cut the ellipsoid in circles.

The circular sections of the hyperboloids of one and two'

sheets can be deduced in a similar manner.

66. The two paraboloids are included in the equation

By' + Gz' = X.

Making the same substitutions as in Art. 64 we obtain

for the equation of the curve of intersection,

^sin'^ (^x"^ + 2B sin <^ cos </> cos 6 xy

+ y^ {B cos'^ 6 cos^<^ + Osin^ 0) = x cos <^ — y cos sin 0,

which will represent an ellipse, parabola, or hyperbola, ac-

cording as

B"" sin'</) cos'^i/) cos'^ - B sin'^^c^ {B cos'<9 cos^^ + C sin'^^)

is negative, zero, or positive. That is, according as

BG sin'^ (/) sin^ (9

is positive, zero, or negative.

The sections of both paraboloids are therefore parabolas

if </> or Q vanish, that is, if the cutting plane pass through the

axis of X or coincide with the plane of xy. In all other

cases the sections of the elliptic paraboloid are ellipses, and
of the hyperbolic paraboloid, hyperbolas.
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The conditions that the section may be a circle are

B sin (^ cos (^ cos ^ = 0,

B sin'^ = ^cos^(/) cos'6' + G sin'6'.

From the first equation

sin = 0, cos (^ = 0, or cos ^ = 0.

If sin
(f)
= 0, the coefficient of cc'^ vanishes, and the section

reduces to a straight line or parabola.

If cos (j) = 0,we have from the second equation B = Csin^O,

and if B and C are of the same sign and B < G this gives

G
two possible values of 6. If cos 6 = 0, we get sin^0 = -^, andB
this gives two possible values of (/> if (7 < 5, and B and (7 have
the same sign. Thus we get real circular sections of the
elliptic paraboloid passing through the axis of y or 2, accord-
ing as j£> < or > G, that is as Z > or < l'.

If B and G have opposite signs, there are no real circular

sections.

j

67. The equation of the elliptic paraboloid can be put
into the form

x^-\-y^ + z^ 0^ 'if' y^ _

x' + y^+z\ f /I 1 x\ / /I 1 ^ \

Thus each of the planes

and therefore all planes parallel to them will cut the surface
in circles. These planes are real if I' >l If T <l we can
shew similarly that the planes
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cut the surface in circles.

C8. We shall conclude this chapter with the investiga-^

tion of the position and magnitude of the axes of the section

of an ellipsoid by a plane through its centre.

(x^ li^ z^

/ Let -2 + ^2+^2 = 1 (1)
a he ^

be the equation of the ellipsoid,

Ix + my -\-nz = {) (2)

the equation of the cutting plane.

r J.
X y z ,^.

Let -='l = - = r (3)\ fJb V

be the equations of any straight line in the plane (2), and let

r be the distance from the origin of the point where it meets
the ellipsoid ; therefore

r'~d''^Jf'^e ^^^'

and l\ -f mfx \-nv = Q (5),

since the line (3) lies in the plane (2).

Also if r be the length of one of the semiaxes of the
section of (1) by (2), we must have r a maximum or mini-
mum by the variation of X, fi, v, which are connected by the
relation (5) and also by the relation

X^ + /.»+i^' = l (6).

Differentiating (4) we get when r is a maximum or mini-
mum

,. \d\ iidii vdv
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And from (5) and (6) respectively,

= ld\ + mdiJb + ndv,

= Xf/X + ^diJL 4- vdv.

Whence by indeterminate multipliers,

X

I

a
+ U + h'\ = (7),

^ + A;m + A;> = (8),
h

1

-2 + ^7^ + ^'V = o (9).

Multiplying (7) by X, (8) by /i, (9) by v, and adding, we
:get

J.
+ ^ = o,

I

i

and therefore
i

X
I
—

s

^ I
= — rd) •*• X =

.(1.-1.)=-.,. .=

klr^aj^
(

V (-2—:,] = — kn
\c r

'

c" — r

a'-
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The directions of the two axes may be obtained by elimi-

nating k and Tc from equations (7), (8) and (9) ; we then get

a"

f^

h'

I \

m fjb

V
-^ n V

= 0,

or ^/..(J-^,)+m.x(i-y+n\^(^^-p) = 0...(12),

which united with (5) and (6) gives two sets of values of

X, II, V.

The expression for the area of a section of an ellipsoid by
a plane not passing through the centre will be given in a

future article. (Art. 79.)

EXAMPLES. CHAPTER V.

1. Shew that the two generating lines of the surface

= ±<^J are atdrawn through a point for which z

right angles to each other.

2. Shew that all the points on the surface

for which the generating lines are inclined at an angle a, lie

in one or other of two fixed planes.

3. Find the angle between the two generating lines of

the surface

at the point a, /S, 7.
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4. If the surface

{x^ +f^ zj = aV + Iff + c'z'

. be cut by a central circular section of the ellipsoid

x^ if z^ ^—I- — -I— = 1
a" ^ b' ^ e '

the sum of the squares on any two perpendicular radii vec-

tores of the curve of section is constant.

5. The equation of a surface can be put into the form

x^ + 2/^ + -s^ + (^^ + 'f^y + "i^z —p) Qfx + my + nz — p) = 0,

find the planes which give circular sections.

6. Prove that the sections of the surface

xy + yz + zx = 1,

by planes parallel to x -{-y + z = 0, are circles.

7. If the two generators drawn from a point on the

surface

x^ y^ / ,—^- = 1
a c

intersect the principal ellipse in points P, P' at the ends of

.conjugate diameters, then will

OF' + OP'' =a' + h' + 2c\

8. Find the circular sections of the surface

a' ¥ "^
c'

9. Prove that if the section of the surface

yz zx ^y _ -,

a c

fby the plane Ix + my + w^ = be a rectangular hyperbola,

— — — =
la' mb^ nd^

A. G. 6
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10. The angle between the generating lines of

—J. -Z- 4- - = 1 at the point {x, y, z) is cos r-^

—

~
a c ^"^ \

where X, and \ are the two roots of

a^ v^ z^

Ill

11. Prove that the foci of all centric sections of the

surface

ax' + hif-{-cz'' = l

lie on the surface

(^2_^_5/2+/)(l_a^^-6/-c/)ja(c-6)V^^^+6(a-c)V^^+c(Z^-a)V/}

=(a^.^+62/^+c/)[(c-6)VV+(a-c)Va;'^+(6-a)V2/'^}.|j

12. Find the equation of a right circular cylinder whose

axis is the line

oc _y _ z '

I m n
'

and whose radius is a.

13. Find the condition that the cone

Ax^ + -B/ + Cz" + 2A'yz + 2B'zx + 2C'xy =

may have three generating lines mutually at right angles.

14. Find the equation of the right cone which has a

centric circular section of the ellipsoid

x^ y"^ z^ ^— 4- — -I— = 1
a h c

for its base and its altitude equal to 6.

15. Find the equation of a right circular cone referred to

rectangular axes, having its vertex at the origin, and meeting
each of the co-ordinate planes in one line onh\

IG. Find the equation of a right circular cone whose
X II z

axis is the line t = — = - , and semi-vertical ansrle a.
I Hi n °

17. Find the equation of a right circular cone which

contains three given straight lines passing through the

origin.
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18. Find the locus of the points at which the two gene-

rating lines of the surface

Ax' -{- Bi/' + Cz' = 1

are at right angles.

19. If a plane be drawn through the straight line

X _ y _z
I 111 n '

the two other straight lines in which it cuts the cone

[B— G)yz {inz- ny) + (G-A ) zx {iix— Iz) -\-{A—B)xy {ly— mx)

=

iwill he at right angles to each other.

20. Shew that any point on the hyperboloid of one sheet

Imay be represented by the equations

X = a cos cf) sec 6,

y = h sin
<f>

sec 6,

z = c tan 6
;

and find the equations of the generating lines through that

<point.

21. Shew that if the two generating lines at any point of

the surface

be at right angles respectively to those of opposite systems

through a second point, the two points are either in a plane

through the axis of z or equally distant from the plane of xy.

22. If two planes be drawn passing respectively through
two generating lines of the same system at the extremities of

the major axis of the principal elliptic section of a hyperboloid

of one sheet and intersecting in any third generating line, the
traces of these planes on either of two fixed planes will be at

right angles.

23. If a= 0, /3= 0, 7= 0, 8=0 be the equations of the four

faces of a tetrahedron expressed as in Art. 26, the equation
of a hyperboloid of one sheet passing through two opposite
edges is

Po.p + Q7S + Myi + SjS^ = 0.

6—2



84 EXAMPLES. CHAPTER V.

24. Find the equation of an ellipsoid referred to the

planes of its central circular sections and a central plane

at right angles to them. If these are rectangular axes,

prove that the squares of the axes are in harmonical pro-

gression, and that the equation takes the form

{x + zY + 3/' {x - z") 4- f _
9 ~r = 9

a

25. Prove that the two generators of the hyperboloid

x^ if f^ _ -,

through the point {x, y, z) will meet the principal elliptic

section at the ends of diameters at right ang^les if

ii' + b'
" &

V



CHAPTER VI.

DIAMETRAL PLANES.

69. It will be useful to commence the chapter with the
I following definitions.

1. The centre of a surface is a point such that all chords
''passing through it are bisected by it

2. The locus of the middle jjoints of a system ofparallel
chords of a surface is called the diametral surface of the

system.

We shall shew that if the original surface be a quadric,

the diametral surface of any system of parallel chords is a
plane. In this case we shall require the following definition.

3. A principal plane of a quadric is a plane perpen-
dicular to the chords which it bisects.

We shall shew hereafter that such a plane can always be
found.

70. If a quadric have a centre and be referred to a
system of axes luith the centre as origin, the equation will not

'Contain any terms of the first degree.

For the general equation of the second degree is

\Ax'' + By'' + Cz'' + 2A'yz + 2B'zx + IC'xy

+ ^A"x + 2B"y + 2&Z + i^= (1).

Then if x^, y^, z^ be the co-ordinates of any point on the

fsurface, —x^y ~ Vv ~^i ^^^st also satisfy the equation (1),

since the origin is the centre. Hence w^e have
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Ax^ + By^ + Cz^' + 2A'y^z^ + 2B'z^x^ + iC'x^y^

+ 2A"x^ + 25"2/i + 2C"2, + i^= 0,

^< + %i' + C'^x' + 2^'2/i^i + 25'^,^^ + 20X2/1
- 2^X - 2^'Vx - 2C"0, + i^= 0.

Subtracting we obtain

4(yiX + ^>i+C''X) = (2).

This equation must be satisfied for all values of x^, y^, z^

consistent with (1). But unless A" = 0, B" = 0, C" = 0, equa-

tion (2) can only be satisfied by the co-ordinates of points

lying in the plane

A"x + B"y + C"z = 0.

Consequently we must have

A" = 0, B" = 0, C" = 0,

or the equation (1) does not involve the first powers of

X, y, z.

Conversely, if the equation of a quadric do not involve

the first powers of x, y, z, the origin is the centre of the sur-

face. Moreover, if the equation can be put in the form

Ax' + By''+ Cz' = F (3),

the axes being rectangular, the co-ordinate planes will be
principal planes. For if x^, y^, z^ satisfy the equation (3), so

do — x^, 3/j, z^. Hence the plane of yz bisects all ordinates

parallel to the axis of x, and similarly for the other co-

ordinate planes.

Conversely, if each co-ordinate plane bisect all chords

parallel to the corresponding axis the equation must assume
the above form. ^

71. To find the locus of the middle points of a system of
parallel chords drawn in an ellipsoid.

Let the eipiation of the ellipsoid be

X y z* ^ ,_.

a be

i
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and let the equations of any one of the system of parallel

chords be

x-OL y-^ z-y—j—=- = -=^ (2),

where I, m, n are direction-cosines.

To find the points where (2) meets (1) we have

v2
(g + IrY {13 + mrf {y + nr)'' _

a' '^ If '^ & "
'

ovr -1+ 77
\a h

This equation gives two values of ?' wdiich are the distances

from the point (a, /3, 7) of the two points where the straight line

(2) cuts the ellipsoid. If (a, /3, y) be the middle point of the

chord these two values must be equal, and opposite in sign ; the

coefficient of r in the equation (3) must therefore vanish, or

It. niS ny

a c

Hence (2, (3, 7) always lies in the plane

Ix my nz ^ ...

-i3+-Tf +^ = (4),

which is therefore the equation of the locus of the middle

[points of the system of chords. .

72. If x^, 2/p z^ be the co-ordinates of the point in which

the line V = = ~ meets the ellipsoid, that is, the co-ordi-
i m n

nates of the extremity of the diameter drawn parallel to the

system of parallel chords, we have

and the equation (4) of the last article may be written
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Also if x^, y^, z^ be the co-ordinates of any point in the

curve in which this plane cuts the ellipsoid, we have

—a" + TT "i—r — ^y
a c

which shews that the point (^,, y^, z^ lies ia the plane

which bisects all chords parallel to the diameter through

1*^2' 2/2' ^i)'

The planes which bisect chords parallel to the two diame-
ters through (.r^, y^, z^, {x.^^ y.^, z^ will intersect in a straight

line. Let the co-ordinates of the point where this line meets
the ellipsoid be x^, 3/3, z^. Then since {x^, y^, z^ lies in the

plane which bisects chords parallel to the diameter through

i^v Vv ^^ we have

~8 ' 7,2 ' 2 ^>
a c

and since it lies in the plane which bisects chords parallel to

the diameter through (x^, y^, z^, we have

These last equations shew that {x^, y^, z^, (x^, y^, z^ both

lie in the plane which bisects all chords parallel to the diame-
ter through (^3, 2/3, z^.

Hence the three diameters have this property, that the

plane through any two of them bisects chords parallel to the

third.

The three diameters are called conjugate diameters.

73. The equation of the ellipsoid luhen referred to a sys-

tem of three conjugate diameters as axes assumes tlie form

x' y' z'
-,

u • - -I = 1

where a', b', c' are the lengths of the conjugate semi-diameters.

For the equation must be of the second degree by Art. 48,

and since each co-ordinate plane bisects chords parallel to

the corresponding axis, by Art. 70 the equation must assume
the form

Ax'-^Bf-+ Cz' = F.
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When the axis



\ci
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Expanding, and rearranging the terms we get

V ic be ' be J
'^

\ ca ca ca J \ ab ab ab J

I
Whence x^^ + a:/ + o-g^ = a^\

yr'^u: + ys' = ^'\ (3),

^1^1 + ^2^2 + ^3^3 =" I (4).

^i2/i + ^22/2 + ^32/3 = ^ )

This transformation can be easily seen to be equivalent to

that affected in Art. 44, usins: -^ for L and so on. And the
° a ^

method of that article may be employed to deduce (3) and

(4) from (1) and (2).

Similar relations exist between the direction-cosines of

the normals to the three planes, each of which bisects chords

parallel to the intersection of the other two. For if l^, m^, n^

be the direction-cosines of the normal to the plane bisecting

chords parallel to the line

wc have

or

X _y
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and obviously also

l^' + m^^ + n^^ = 1]

C +< +< = l (^)-

75. From equations (3) of the last article we obtain by
addition

a" + h"-\-c" = a'-\-h' + c' (1),

iwhere a, h', c are the lengths of the conjugate semi-diameters.

Let \, fji, V be the angles between {h\ c), (c, a) and
{a, h'), respectively.

Then since the direction-cosines of a referred to the prin-

cipal axes of the ellipsoid are —J,^,-!, and similarly for
^ ^ a a a "^

those of h\ c, we have, by Art. (8),

smX- ^^, ,

But we have ^ . -^ + f-^ f^ + -V -^ = 0,
a a b b c c

.-Ti'i ~r • ^5
a a c> t> c c
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'
Hence 6'V^ sin^X = 6V^' + cVf^V a'Z>

a b" c

27,2 ^1

Similarly cV s'm'/i = hV '-^ + cV |V + a'^i'

a b' c

Adding, we get

(b'c sin \y + (c'a sin ya)^+ (a'6' sin vy= bV + cV+ a^Z>\ . .(2).

Again, if _/? be the peipendicular from the point (^3,2/3, z^

on the plane which contains a' and b', whose equation is

' L2 "T ^^ '^J
d' ' b'

we have p =

^'
4. .^^ 4. -

g'^
"^

b'
"^

c'^

.a^
"^

6^
"^

c^

1

.a' b^ c
4

Hence squaring and multiplying by the value previously

obtained for a%'^ sin" v we jret

2 "27 '2 ' 2 ?7 2 2 /0\
p a b sm v = a b c (3).

But db' sin v is the area of the parallelogram whose edges
are a and b\ and pcib' sin v is the volume of the parallel-

epiped whose base is this parallelogram and whose altitude is

2), that is, the volume of the parallelepiped whose three edges
are a, b', c.

By Art. 14 this volume can be expressed in the form

db'c J\ — cos^ \ — cos' jjb — cos'^ v+ 2 cos \ cos /i, cos p.

Hence this expression is equal to abc.

70. Another method of obtaininq- these relations is

afforded by the consideration that the expression

~, + f + '^. + H-^' + r + ^)
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is transformed by taking three conjugate diameters as axes to \.

the expression

a? v"^ z^ o .
^

— + r^a + "^2 + ^^ (^' + 3/^ + -^'"^ + ~]}^ cos A, + 2ir.r cos/x + ^xAj cos v).
'

Consequently, if for any value of k the first expression split

up into two linear factors, the second expression will do so

likewise for the same value of h.

By Art. 49 the requisite values of h for the two exjDres-

sions are given respectively by the equations

'^ + S ^ + 6~=) ^ + ?) = *^'

and

1^ (^+A-.)(fc + l)(^-+-l)

— ^'" COS" \ [h -\- -,A — W" COS- ^[h ^r -j-izA—h'^ cos^i/ f k + —^
j

+ 2^^^ cos \ COS /A cos z^ = 0, I

which when cleared of fractions and expanded become re-

spectively,

a'h'c'k^ + {a%^ + ¥0" + cV) ^^' + (a' + 5' + c') ^ + 1 = 0,

and

a%V (1 — cos^ \ — cos^ fz — cos^ z^ + 2 cos X cos fju cos z^) F
+ (6''c'' sin' X + c'a' sin' /^ + a'b" sin' z;)

^''

+ (a'' + 6'' + c") k+l = 0.

And since these equations are identical we get the rela-

tions (1), (2) and (3).

They can also be obtained geometrically by a series of

transformations ; or by finding the values of the maximum
radius vector of the surface when referred to three conjugate

diameters as axes. The result will be a cubic equation in r',

and the three values of r^ will be a', ¥, c"; whence the

values of

a'bV, a'6' + cV+6V, a'+b' + c'

are known in terms of a, b', c', ^^
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The formulae obtained in Arts. 71—76 hold for the othei

central surfaces if the proper changes be made in the signl

of a^ If and cl

77. The equation of the plane -which bisects all chords

of the ellipsoid parallel to the line

^=^=^ (1)

'

a^i »/, ^i

is xA,+y.ll + zA, = Q (2).

Conversely the chords which are bisected by the plane

Ix + my -\- nz = (3)

are parallel to the line

— = -1— = -- (4.')

d'l b'm chi ^ ^'

I
The line (4) is said to be conjugate to the plane (3).

By Art. 72 every system of chords parallel to any line

which lies in the plane (3) is bisected by some plane passing

through (4).

Hence the plane passing through the origin which bisects'

any system of parallel chords of the section of the ellipsoid

by a plane

lx-\- my -\- nz — p = (5)

parallel to (3), must contain the straight line (4). Whence
it easily follows that the point Avhere (4) meets (5) is the

centre of the section of the ellipsoid made by (5). The co-

ordinates of this centre are therefore given by

X ^ y__ z^_ _lxj\-7ny -\-nz ^ p .

dH ~ I'm ~ c'n
~ a'F+bW + cV " ^^FT6W"TcV

" '

'
^

^'

78. The co-ordinates of the centre of the section of the
ellipsoid :

SL^ 11^ z^
-. + f. + ^ = l (1)
a he ^ ^

by the phmc Ix + my + nz = p (2)

can also be obtained in the foUowincr manner.
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Let a, /8, 7 be the co-ordinates required, and let \

oc-cc^y-^^z-y^^^ \

\. be the equations of any straight line drawn in the plane (2)

I to meet the ellipsoid, r being the length of the radius vector.

Then if x, y, z be the co-ordinates of the point where (3)

meets (1), we have from (3)

cc = a + Xr, 2/
= /3 4- ^r, ^ = 7 -F it,

and therefore from (1) by substitution

^ But if a, /3, 7 be the co-ordinates of the centre of the
f'' section of (1) by (2), the two values of r given by (4) must

be equal in magnitude and of opposite sign for all straight

lines lying in (2) ; that is, we must have

A,a /^^ 1^7
-^ + 70 + rr = ^ \S>)

U a- Ir jc' ^ ^

for all values of \, [i, v consistent with the equation

\l -i- /jLVi + vn = (6),

hich is the condition that (3) may lie in (2).

Hence the equations (5) and (6) must be identical, or we
have

Id' mb'' 7ic"

ti and as in the last article each of these fractions

^ P _

\\ w

a'P -b b'TTi' + c'n
••^^,2

*

79. The equation (4) of the last article, when the values

of a, /3, 7 are substituted in it, becomes
1

2 2 2\ A^2a^ y^' v'\ .
p'

Comparing this with equation (4) of Art. 68 we see that
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if Tj be the central radius vector which is parallel to r, w(

have

Consequently, since the areas of similar figures are pro-

portional to the squares of any corresponding lines in the

figures, if A be the area of the section of (1) by (2), and A\
the area of the parallel central section,

.

A = A^\1

irahc

P'

ciH- + b'm' + c'li
•^^.^\

1 - F

80. The result of the last article can also be obtained iri|

the followinfij manner.

Let a, j3, y be the co-ordinates of the centre of the sec-|

tion. Then the equation

" "^
b^

"^
c" ~a (1)

represents an ellipsoid whose centre is at (a, /?, 7), and whos(
semi-axes are ka, kh, kc.

At the points where this cuts the given ellipsoid we have

by subtraction

Or, putting for a, fi, 7 their values from equation (6) of|

Art. 77,

2 {Ix -f- my 4- nz)
a'P+hV+c'n'' f +1-^1,

and if this ecjuation be identical with

Ix + my + nz = J) (2),

the sections of the two ellipsoids by this latter plane willj

V coincide.
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The condition for this is

l-k' = F
ar + h%i' 4- c'n'

2 7

.'.¥ = 1-
^'

But the area of the section of (1) by the plane (2) whicli

passes through its centre, by Art. (68)

_ irh^ahc _ nrahck^

irahc
f^

p^
,2^2 i

Jeer + 6W + cV I ci'l" + &'^?i' + cV
which is therefore the area required.

81. It can be shewn by an investigation similar to that

in Art. 71, that the locus of the middle points of a system
of parallel chords of the surface

By'' + (7/ = X,

^Yhose direction-cosines are I, m, n, is

2Bmy + 2Gnz = I.

Also the equation of the surface, when two diametral

planes and a plane through the point where their line of

ntersection cuts the surface, parallel to the two systems of

chords bisected by them, are taken as planes of zoo, xy and yz

•espectively, will assume the form

By + V = X,

:yhere B' and C have the same or opposite signs according

IS B and G have.

We shall however at once proceed to the more general

problem.

82. To find the locus of the middle jjoints of a system of
Parallel chords in any quadric.

Let the equation of the surface be

Ax" + B^f + Cz' + 2A'yz + 2B'zx + 20'xy
\-2A"x + 2B"y + 2C"z + F=0 (1),

vhich we will denote by F [x, y, z) = 0.

A. G. 7
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I m n
(2),

or i^(a,A7) + |z-^-+m n^J\r + Pr^ = 0...{^),
d^

be the equations of any one of the system of parallel chords.!

To find the points where (2) meets (1) we must substitute;

a + h\ /3 -f- mr, y + nr for x, y, z in (1). We thus get

i^ (a 4- h\ p + mr, y + nr) = 0,

dF
dl3

where -r- , -ttsj -i- are the partial differential coefficientsj
do. dp dy

j

of F (a, /3, 7) with respect to a, /3, 7 respectively and P is]

some function of I, m, w.

The equation (3) gives two values of r, which are the!

distances from (a, /3, 7) of the two points where the line
(2)J

cuts the surface (1). If (a, /3, 7) be the middle point of th(

chord these two values must be equal and opposite in sign,!

and the coefficient of r in the above quadratic must vanish

;

,dF dF dF ^
i -^—h 111 -T7^ -\- n -^ — 0,
da d^ dy

or writing out the values ^^
-f-

y -fo and -v- , and rearrang-]

a{Al+C'm + B'n) + ^(C'l-\-Bm + A'n) + y{El+ A'm-\-Gn)

+ A"l-\-B"m + G"n = 0,\

which shews that the locus required is a plane.

83. The diametral plane wdll not in general be perpen-
dicular to the chords which it bisects. There are however
certain directions of the chords for which this is the case-

Let us suppose I, m, n to be the direction-cosines of any chord
of the system.

The equation of the diametral plane is therefore by the 11

last article,

x{Al-{- Cm + Bn) + y [C'l + Bm + An) +z{Bl-\-Am + On)

+ A"l + B"m+ C'n^O.
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If this plane be perpendicular to the system of chords we
must have, by Art. 23,

j^l + C'm + B'7i C'l + Bm + A'n B'l + A'm + On

I m n

(1).

Let each of these fractions be put equal to some quantity

s. We have then

(A-s)l + C'm + B'n = 0\

C'l'\-(B-s)m-]-An = ol

B'l + A'm + (C-s)n = 0]

Whence eliminating I, m, n, we get

[A-s), G\ B'

G\ {B-s), A'

B\ A', (C-s)

or (A - s) (B - s) (C -s)- A'' (A -s)-B"{B-s)-C'(G-s)
+ 2A'EG' = (2).

This cubic equation will certainly give one real value of s,

and the corresponding values of I, m, n are known from any
two of the three equations (1). From the second and third

we get

= 0,

m n

(3),

A'B'-a [C- s) AV -B'{B-s)'

or m [A'C -B'(B- s)} = n {A'B' - C {C - s)]

= l[BC'-A'{A-s)]...

by symmetry.

And when the value of s is known, equations (3) give the

corresponding values of I, m, n.

In Todhunter's Theory of Equations, Art. 176, it is shewn
ithat all three roots of the cubic are real.

The equation (2) is frequently called the discriminating

3iibic of the quadric (1).

o•^
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EXAMPLES. CHAPTER VI.

1. If A^, A^, A^ be the areas of the sections of the

ellipsoid

x^ f z"
,—V — -\— = 1

made by planes perpendicular to any three generators of the

cone

cc' (a' - d') 4- y' {h' - d') + z' (c^ - cZ') = 0,

and if p^, 2\, p^ be the perpendiculars on the planes from the

origin, then

A (p: -Pi) + ^. ivi-p") + ^s (p: -Pi) = 0.

2. Find the locus of the centres of sections of an ellip-

soid, the areas of which are always in a constant ratio to the

areas of the parallel central sections.

8. OX, OM, ON are conjugate semi-diameters of an

ellipsoid ; x^^ y^, z^ the co-ordinates of L ; x,^, y^, z^ and
x^,

2/s' -^3 those of M and N respectively. Prove that the

equation of the plane LMN is

^2K + x^ -f x^) + y, (y^ -{- y^ + 7/3) + ^2
{z^ + ^^ -f ^3) = 1

.

4. Find the area of the section of the ellipsoid by the

plane LMN in the last example.

5. OL, OM, ON are conjugate semi-diameters of an ellip-

soid ; a perpendicular is drawn from on the i^lane LMN
meeting it at Q ; and a diametral plane is drawn parallel

to the plane LMN. Shew that the cone which has its vertex

at Q and for its base the section of the eUipsoid by the,

diametral plane, is of constant volume. '4

G. Find the locus of the directrices of all sections of an
ellipsoid made by planes passing through the least axis.

I
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7. Shew that a straight line parallel to the least axis of

an ellipsoid will be the directrix of two plane sections of the

ellipsoid, provided the straight line be situated between two
definite cylindrical surfaces.

8. Find the locus of the centres of sections of an ellipsoid

made by planes at a constant distance from the origin.

9. If A, B, C be the areas of any three conjugate dia-

metral sections of an ellipsoid ; X, Y, Z those of the sections

made by planes respectively parallel to them and intersecting

in a point on the surface, prove that

X Y Z ^—I 1--=2.ABC 3 i
\'> > \

->'

10. Any generating line of the cone

Psc^ + Qif + Rz^ =

being taken, a plane is drawn diametral to it with respect to

the surface

Ax"" + Bif + Cz" = 1.

Shew that the principal axes of the sections of the latter

surface by such planes all lie on the surface

-^ {{A -B)f+{A- C) zf + -^- {[B - G) z'^ + {B - A) ^^

+ ?^,[{G-A)x'+{G-B)ff = 0.

11. Find the co-ordinates of the centre of the section of
the surface

Bf -\-Gz^ = x

made by the plane Ix + my + nz = p.

Find the locus of the centres of all sections made by
planes passing through a fixed point.

12. If in question 3, the point L remain fixed, shew
that the perpendicular from the origin on the plane LMN
describes the cone

a/x' + hY + c'^' = 3 [xx^ + yy^ + ^^J^
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13. If the plane Ix + my + nz =p cut the surface

2 "• 7,2 T5 -*•

in a parabola, prove that

a^V" + Wm"" - cV = 0.

14. Corresponding points on an ellipsoid of semi-axes

a, 6, c and a sphere of radius r, being defined by

X _x y _y ^ ^^'

a r ^ h r ^ c r
'

then, if, .61P, and Op be corresponding radii of the ellipsoid

•: •* /and^ 't'he. -slphere, Oq and Or any two radii of the sphere

'. perpendicular, to '0P, prove that Oj) will be perpendicular to

: *..•'. QQ, 'a:ad pfi^, ,ih.(iX'^dii of the ellijDsoid corresponding to Oq
' and'0?\
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CHAPTER VII.
V

THE GENERAL EQUATION OF THE SECOND DEGREE.

84. The general equation of the second degree can be
written

Ax' + Bf + Cz' + 2A'y2 + 2B'zx + 2Cxij

-{-2A"x + 2B''y + 2C''z + F = (1),

which we will denote by F {x, y, 2^) = 0.

The object of the present chapter is to examine the

nature of the different surfaces represented by (1), and the

conditions that it may represent any particular kind of

surface.

We shall first examine whether the locus represented by

(1) has a centre.

If it has a centre and this point be taken for origin we
' know, by Art (70), that the terms of the first degree must
disappear.

Assume a, ft 7 as the co-ordinates of the centre. The
equation w^hen the origin is transferred to this point is ob-

tained by substituting in (1) x -\-(i,y -\- ^, z -\-^ for x, y, Zy

respectively (Art. 43), and is therefore

F{x'-\-a, y' + (3, / + 7) = 0,

which can be written

rr/ a N 'dF ,dF ,dF
F(a,^,y)-,x^^y^^ +z^ + ...=0,
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the remaining terms being of the second order in a/, y\ z

.

and -;— , -T7., ^- navmsf the same meaning^ as m Art. 82.
da' dl3' dy ^ ^

If the coefficients of x, y\ z vanish, we have

^^=0 ^^=0 ^=0
cZa ^' fZ/3 ^' dy '

or writing them out at length,

Aci+ C'p +B'y + A" = 0\

C'a+Bp +A'y + B" = o\ (2).

B'oL-\-A'^+Cy +C"=0j

These equations determine a, yS, 7. We get from them

___ ^A"{A"-BC) ^B"{GG'-A'B') + C"{BB'- C'A')
"~ -^— - ABG + 2A'BG'-AA"-BB"-GG'^

A"
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85. We see from the last article that it is not always
: possible to get rid of the terras involving x, y, z. We shall

now shew that it is always possible to simplify the equation
by transformation so as to get rid of the terms involving yz,

zx and xy.

By Art. 83 we know that there is at least one system of

parallel chords which is perpendicular to its diametral plane.

Let a straight line parallel to these chords be taken as the
axis of z and let the transformed equation be

p^2 ^ g^2 _j_ ^^2

^

^-p>y^

^

2 Qzx + "iExy

+ "iF'x + 2Q'V + 2i2"^ + ^ = 0.

The direction-cosines of the chords which are perpen-
dicular to their diametral plane are given by the equations

Fl + -R'm + qn = si,

R'l + Qm + P'n = sm,

Q'l + P'm + Rn = sn.

But since these chords are parallel to the axis of z, these
equations must be satisfied by

1 = 0, m = 0, n = 1.

Whence we get Q' = 0, P' = ; and the equation of the
surface is

P^' + Q/ + Rz' + 2Exy + 2P"x + 2Q"y + 2R"z -i-F=0.

Turning the axes of x and y in their own plane through
an angle 6 given by the equation

2R'
tan 26 = p—-^

(Todhunter's Conic Sections, Art. 271),

the term involving xy disappears, and the equation assumes
the form

Px' + Qy' + Rz' + 2P"x + 2 Q'y + 2E'z + F=0.

The equations which determine the directions of the
principal diametral planes are now satisfied by Z = 1, m = 0,

n = 0, or by l=zO,m = l,n = 0. Consequently each of the
axes of X and y as well as that of z is parallel to one of the
three lines determined by equations (1) of Art. 83.
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We thus have an independent proof that these three]

directions are all real and at right angles to each other.

86. We have now shewn that by a proper choice ofl

axes the terms involving yz, zx and xy can be made to-'

disappear. It remains to explain how the coefficients of

the different terms in the resulting equation can be de-^

termined.

Let Zj, m^, n^ ; l^, m^, n^ ; l^, m^, n^ be the direction-

cosines of the new axes. These values all satisfy the equa-l

tions (1) of Art. 83. Let s^, s^, s^ be the corresponding]

values of s.

By Art. 44 the required transformation will be effected,

by substituting for co, y, z the expressions

respectively. If therefore the original equation be

Ax^ + By^ + Cz"" + 2A'yz + 2B'zx + 20'xy
+ 2A"x + 2B'\j + 20"z + F=0,

the coefficient of x'"^ in the result will be

Ai; + Bm^' + On^' + 2A'm^n^ + 2B'7iJ^ + 20\m^.

But from Art. 83 we have

Al^-\- Cm^ + B'n^ = sJ^,

O'l^ + Bm^ -{ A'n^=^ s^m^,

B'l^ 4- A'm^ + Cn^ = s^n^.

Multiplying these equations by l^, ii\, n^, respectively,

and adding, we get

Al^' + Bm^' + On; + 2A'm^n^ + 2B'nJ^ + 20'l^m^ = 5,.

Hence P the coefficient of x'^ is 5^. Similarly Q = s^,

R = S3, or P, Q, 11 are the three roots of the discriminating

cubic.

It follows from this that the coefficients of the discrimi-

nating cubic remain unaltered in value however the axes

may be turned about the origin.
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The results of this article have been already obtained by
a different method in Art. 51.

87. It is easy to verify that the coefficients of yz\ z'x

and x'y disappear ; since \, 7ii^, 7\ ; l^, m^, n^ ; l^, m^, n^ are

the direction-cosines of lines such that any one is parallel to

each of the planes which bisect chords parallel to either

of the others, and thus l^, m^, n^, l^, m^, n^, satisfy the

relation

AIJ^ + Bm^m^ + Cn^n^ + A' {m^% + m^nj

+ B' {nj.^ + 7^,y + C {l^m, + l^m^) = 0,

and the expression on the left-hand side of this equation is

the coefficient of x'y' in the transformed equation.

The coefficients of x, y' and z in the transformed equa-

tion will be

^ and 2 {A'\ -t- F'm^ + G'\),

respectively, and the constant term remains unchanged.

88. The equation when transformed to

Pcc^ + Qif + R^^ + 2P"x -h 2Q"y -F 2R"z + F=0
can be farther simplified by a change of origin.

\ Suppose first that none of the quantities P, Q, R vanish,

i| that is, that none of the roots of the discriminating cubic
l| vanish, which will be the case if the constant term of the
i! cubic, or

ABC + 2A'B'C' - AA" - BB" - CO",

be different from zero.

In this case the equation can be written

I
V ' PJ ' ^V ' QJ ' ^'V ' R

12F" Q'" R'" ^ ^,

F ^ Q ^ R '
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(-

and transferring the origin to the point whose co-ordi

nates are

P" _q'_ _Br
P' Q' R

this becomes

This represents an ellipsoid, a hyperboloid of one or two

sheets, or an impossible locus, respectively, according as the

w w w
quantities p , -^ , -^ are all positive, two positive and one

negative, one positive and two negative, or all negative.

Thus unless

ABC + ^A'B'C -AA"- BB" - CC"

vanish, the surface has a centre and is one of the surface"

whose equations we have already investigated.

Now if we had first changed the origin to be the centre,

we should have got rid of the terms of the first degree, and

the equation would have been

Ax^ + Bif + Cz' + 2A'yz + 2B'zx + IC'xy = F' (1),

which by turning round the axes would become

1^0? + qif + Rz^ = P',

and consequently, if F be positive the surface (1) will re-

present an ellipsoid, a hyperboloid of one or two sheets,

or an impossible locus according as the roots of the dis-

criminating cubic are all positive, two positive and one

negative, one positive and two negative, or all negative.

If F' be negative the order of the statement must be

reversed.

89. If F vanish the surface is a cone. Now returning

to Art. 84 we see that F = — F {a, j3, 7), where a, /3, 7 are

determined from the equations

^a + C"/3+P'7 + ^" =
0'a+ 7i/3 +.4'7 + i^" = o[ (2).
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Multiplying the first of these by a, the second by p, the
ihird by 7 and adding, we get

^a^ + B^' + Cy + 2.4 '/37 -h 2B'r^ + 2G'ol(3

+ A"oL + B"^ + C"y = 0.

3ut

^'/ + BIB^ + Cy^ + 2J.'y57 + 25'7a + 2C"^/3

+ 2^ "a + ^B"13 + 2(7"7 + i^ = i^ (a, A 7) = - i^'.

Subtracting the first of these from the second, we get

-F =A"a + B"^ + C"y + F.

Hence if the surface be a cone

And eliminating a, /3, 7 between this equation and the
ihree equations (2), we get as the condition that the surface

epresents a cone

A C B' A"
C B A' B"
B A' C C"

A" B" G" F

= 0.

90. Suppose, secondly, that one of the quantities P, Q, R
vanishes, as P. From this it follows that the constant term
}i the cubic in s must vanish, or

ABC + 2A'EC' - AA" - BB" - CC' = 0,

vhich we saw in Art. 84 indicated that there was not a

lefinite centre.

The equation becomes

Qif + Rz' + 2P"^' + 2Q''y + 2R"z + P = 0,

md by changing the origin we can get rid of the terms
i n y and z, and the constant term ; the equation thus

becomes
I Qif + Rz' 4- 2P"^ = 0,

vhich represents an elliptic or hyperbolic paraboloid ac-
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cording as Q and R have the same or opposite signs, o

according as

which is the coefficient of s in the cubic, and therefore

equal to the product of the two finite roots, is positive 0]|

negative.

i/{^ 91. Thirdly, let two of the quantities P, Q, R vanish

which necessitates the two conditions,

ABC + ^A'B'C - AA" - BB" - CC" = 0,

BG + GA+AB-A"-B"-C' = 0.

The equation now becomes

Rz^ + 2P''a) + 2 g'y + 2R"z + F=0.

And by changing the origin, the term involving z and the

constant term may be removed, and we get

Rz' + 2P"a) + 2Q'y = 0.

By turning the axes of oo and y round in their own plane,

the equation can be reduced to the form

Rz' + 2P'''a) = 0,

which represents a parabolic cylinder whose generating lines

are parallel to the axis of y.

The two conditions

ABC + 2A'B'C' - A A'' - BB" - CC = 0,

BC + CA -^ AB - A" - B" - a' = 0,

can be replaced by simpler ones. For the first equation is

equivalent to either of the forms

{GA - B") (AB - C"-') = {B'C - AA')\

(AB - C") {BC - A") = {C'A' - BB')\

{BC - A"') {CA - B") = {A'R - CGJ,

whence it foHows that the three quantities AB — C'^, GA — B'^y

BC — A'^ have all the same sign, and therefore if their sum
vanishes they must vanish separately, and we must have

BC-A" = 0, CA-B" = 0, AB-C"' = 0,
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We must also have

BV'-AA' = 0, C'A'-BB' = 0, A'B'-CG' = 0,

but these are included in the former.

I
92. If only one of the quantities P, Q, R, as P, vanish,

1 and P" also vanish, the equation becomes

Qf + Rz' + 2q'y + 2R"z + F = 0,

which can be reduced to the form

Qf + Rz' + i^' = 0,

I and therefore represents an elliptic or hyperbolic cylinder ac-

cording as Q and R have the same or opposite signs, that is,

according as

BG-A" + CA -B" + AB-C''

is positive or negative.

If Q, R and F' have all the same sign the locus is an
impossible one.

The condition that P" may vanish is, that

A'\+B"m^ + C'\

should vanish, where l^, m^, n^ are the values of I, m, n de-

rived from equations (1) of Art. 83 by putting 5 = 0. But
these values are proportional to

1 1 1

B'C'-AA" CA'-BB" A'B-CG"
I so that we get

A" B" C"

B'C - AA' ' C'A' - BB' ' A'R - GO'

This condition may be obtained in another form from the

consideration that the equations

A"l^ + B%i^-i-C"n^ = 0]
A\ +Cm^ +B\ =0
G\ +Bm^ +A\ =
B\ +A'm^ + Gn^ =0

•(1)
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must be all satisfied by the same values of l^, m^, 7i^, and the

requisite conditions that this may be the case are

ABC 4- 2A'B'C - AA" - BB" - CC" = 0,

united with any one of the set,

A'' (CC - A'E) -i- B" (B" - GA) + C" {AA' - B'C) = 0,

)

A'' {A" -BC) + B" {CC - A'B') + C" {BE - C'A') = 0, >

A" {BE - C'A') + B" {AA' - EC) + C" {C" - AB) = 0.
^

The equations (1) are evidently the conditions that the
three equations (2) of Art. 84 should not be independent, and
consequently there is a line of centres.

93. If two of the roots of the discriminating cubic as P
and Q vanish, and P", Q" also vanish, the locus reduces to

which represents two parallel planes. The conditions for the

two roots vanishing are

BC-A" = 0, CA-E'=^0, AB-C" = 0.^....{2\

and I^, m^, n^ are only restricted by the equation

^Z, + OX + ^X = (3),

with which the other two equations in (1) Art. 83 become
identical.

If we have also A"l^ + 5"m, + C'n^ = 0, for all values of
Zj, TWj, ?ij consistent with (3) we must have

A" B" C

or from (2)

/

A C E '

A/^ ^E^^C^
JA JB JC

'

f^ 94. On the whole then we have the following results.

I. If ABC + 2A'EC -AA"- BE' - CC be not zero,

the equation represents an cllijosoid, a hyperboloid, or an
impossible locus, with the cone as a variety of the hyi^er-
boloids.
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II. If ABC + 2A'B'C' - AA" - BB" - CC" vanishes,

the equation in general represents an elliptic or hyperbolic

paraboloid according as

BC-{-GA-^AB- A" - B'^ - G"

is positive or negative; which may degenerate into an
elliptic or hyperbolic cylinder, with an impossible locus, a

straight line or two intersecting planes, as particular cases.

III. If BC-A", GA-B'\ AB-G'^ all vanish, the

equation represents a parabolic cylinder which may degene-

I rate into two parallel or coincident planes.

The conditions that the equation may represent a surface

of revolution may be obtained from the consideration that
' two roots of the cubic in s are equal. This is discussed in

Todhunter's Theory of Equations^ Art. 179, to which the

reader is referred.

The reduction of the equation in the particular case

when

ABG + 2A'B'G' - AA'' - BB" - GG" =

may be effected by writing it in the form

(Ax + Gy + B'zf + (AB - G'^) f + 2 '{AA! - B'G) yz

+ {GA - B') z'-\-A {2A"x + 2B"y + 2G"z + i^) = 0,

AA' - B'G GA - B"
or puttmg ^^ _ G'^

=V = aA'-B'G' '

{Ax + Gy + B'zf + {AB - G") {y + pz)'

+ A {2A"x + 2B"y + 2G"z -\-F)=0.

And if we take as co-ordinate planes the planes

Ax + G'y+B'z = 0,

y-\-pz = 0,

2A"x-\-2B"y + 2G"z-¥F=0,

this equation will in general assume the form

Py^+Qz' + Rx=0,

which represents one of the paraboloids. The axes are not

tiowever rectangular. The exceptional cases can be deduced

A.G. 8
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from the consideration that the reduction fails when any

two of the three planes are parallel, or when one of them
is parallel to the intersection of the other two. i

We shall conclude this chapter with the following general

proposition.

95. If two surfaces of the second degree intersect in one

plane curve, all their other points of intersection lie in another

plane curve.

For let S = and B' = be the equations of the two

surfaces, and Ix 4- my +nz — p=^, ox a = 0, the equation of

the plane of intersection. Then the curve in which a =
cuts the surface >Sf = coincides with the curve in which it

cuts the surface S' = 0. So that the three equations S = 0,

S' = 0, a = are satisfied by an indefinite number of values

of X, y and z.

Consequently the expression 8 must be identical with

k8' + a^, where A; is a constant and /3 a linear function of

X, y, z.

Hence when S=0 and 8' = 0, we have a = or /S = 0,

that is, all the points of intersection lie in one of the two

planes a = 0, or /S = 0.

EXAMPLES. CHAPTER VII.

1

.

Investigate the nature of the surfaces,

(1) ^x" + ^xf + 3^' + 2yz - Szx - 2xy -1=0.

(2) ic' + 42/' -z"- ^yz -zx+ ^xy + 22; = 0.

2. Interpret the equations

:

(1) yz-\-zx + xy- x-2y-^z -\-2 + a = 0.

(2) a;' + 2 ?/' - 3;3' -f 27/2; - 4^zx - Ixy + 3a; = 0.

(3) x^ + 9/ - ^xy + 2y-4!Z = 0.

(4) x' + ?/'-/ + 2yz -f 2zx - 2xy -{2x+2y + 22 = d\
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3. Shew that the two surfaces whose equations are

[K" -f 6V c') x" + {h^ + c^ + a^) y" + (^' + a^ + 6')^'

— 26ci/2 — '^cazx — 2ahxy = 1,

and (c?/ — 5^;)^ + {as — cxY + (6^ — ayY = 1,

have their axes coincident in direction. What kind of sur-

face are they respectively ?

4. Discuss the surfaces obtained by giving different

values to fju in the equation

5. Find the nature of the surface

a b c DC ca ab a b G

and shew that it touches the co-ordinate planes.

6. If one of the angles between the co-ordinate axes be
a right angle and the other two be supplementary, prove that

the sum of the squares of the axes of the surface

xy -\- yz -\- zx + (f =
is 126^^ (Ex. 7, Chap. iv.).

7. Shew that if two generators of a hyperboloid of one

sheet be taken as two of the axes of co-ordinates, the equa-

tion is of the form

z"^ + az = lyz + mzx \- nxy.

8. Find by the method of Art. 68 the position and mag-
nitude of the axes of the section of the surface

Ax" + By^ + Gz'' -h 2A'yz + Wzx 4- 2G'xy = 1

by the plane

Ix -f my -f nz = 0.

9. Find by the methods of Arts. 68 and 78 the centre

and axes of the section of the surface

Jx + Jy+Jz^O
by the plane

lx + my + nz = 1.

10. If the equation

ax^ + by^ -h cz"" + 2b'zx + 2c'xy 4- 2a"x + 2b"y + 2c"z + cZ =
represent a paraboloid of revolution, prove that c = ^ + a. If

8—2
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the upper sign be taken, prove that the equations to the

axis are

cz + c" = 0, (ex + a) Ja + (cy + b") Jh = 0,

and find the condition that the paraboloid may reduce to a
circular cylinder.

11. Find the equation of a surface of the second degree

which contains two given straight lines at right angles, and

the condition that it may be a hyperboloid of one sheet.

Take the shortest distance between the lines as axis of z,

the middle point of it as origin, and the axes of x and y
parallel to the two lines.

12. Find the equation of the surface generated by a

straight line which meets three straight lines which are

mutually at right angles, but which do not intersect.

13. Shew that the section of the surface

Ax^ + By^ + G£' -h 2A'yz + 2B'zx + ^G'xy = 1,

by the plane Ix + my -\-nz = 0, will be a circle if

Bn' + Giit'-'lA'mn _ CP + An'-2B'nl ^ Am' hBl'-2C'lm

;;?T^? n'-^l' I'+m'

14. Shew that the axes of the surface

Ax' + By' + Cz' + 2A'yz + 2B'zx + 2C'xy = 1

lie on the two cones

C (x' - f) - B'yz + A'zx -(A-B)xy= 0,

jl' ^,f
_ 2') -{B-C)yz- C'zx + B'xy = 0.

15. A cone whose equation referred to its principal

axes is

aV + /Qy = (a' + ^') z\

is thrust into an elliptical hole whose equation is

a' ^ b'

Shew that when the cone fits the hole its vertex must lie

on the ellipsoid

x' y' 2/l,l^_^



CHAPTER VIII.

ON TANGENT LINES AND PLANES.

96. The straight line joining any point P on a surface

to another point Q on the surface, is called a chord. If the
point Q be made to approach indefinitely near to P, the
limiting position of the chord PQ is said to be a tangent line

to the surface at the point P.

In general all the tangent lines at the point P lie in a
plane, which is called the tangent plane at P. This we will

now prove.

Let X, y, z be the co-ordinates of any point P on a surface

whose equation is

P(^,2/,^)=0 (1).

And let the equations of any straight line through P be

x' —xy'—yz—z ,^.

where oo', y\ z are current co-ordinates.

To find the points where (2) meets (1) we must substitute

x-vlr.y -\- mr, z + nr for x, y, z in (1)

;

we thus get the equation

F{x -\-lr, y -\- mr, z + nr) = ;
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f,dF dF dF\

r^{jd d dVj^, .

+

+
^l^i

+™| +
4r^<"'2/.^)

= 0...(3),

supposing F (x, y, z) to be of the p^^ degree in x, y, z.

This equation gives the distances from P of the different

points in which (2) cuts (1), and since {x, y, z) is a point on

the surface (1), F {x, y, z) vanishes and the equation (3) is

satisfied by one value of r equal to zero.

If I, m, n be such as to satisfy the equation

,dF dF dF ^ ,^.

^^+^^5^ + ^^ = ^ W'

two values of r are zero, and the line (2) meets the surface in

two coincident points, and is therefore a tangent line to the

surface at {x, y, z). Equation (4) is therefore a condition

which must be satisfied by the direction-cosines of all tangent

lines at the point P.

But for all points in any such tangent line we have

X —X _y —y _z' — z

I m n '

Consequently for all points in any such tangent line we
have

, , . dF , , s dF , , V dF - ,^.
(.'-a.)^^+(2/-y)^^ + {.-.)^ = 0...(o),

whence it follows that all the tangent lines in general lie in

a plane whose equation is (5J.

97. It may happen that at a given point of a surface the

three quantities -^ ,-r- and -y- all vanish.
^ ax ay az
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If this be the case, the equation (3) of the last article

always gives two values of r equal to zero, and all lines

through the point P meet the surface in two coincident

points. The vertex of a cone is such a point. If we take

I, m, n such as to satisfy the condition

d?F , d'F , d'F

dx'
i-m

dij
+ n

dz"

d'F
+ 2nl f^ + 2Zm-^ = ... (1),

dydz '

*"'" dzdx dxdy

three values of r mil be zero, and the straight lines whose
direction-cosines satisfy this equation meet the surface in

three coincident points ; eliminating I, m, n, we have as the

equation of the locus of all such straight lines

d'F

dx'

, 2 d^F , , .2^^
y) ^2-^(^ - ^)

dy' dz'

^2{y'-y){z'-z)^^+2{z'-z){x'-x)
^'^

dy dz

+ 2(^'-^)(y'-y);^=0

dzdx

••(2).
dxdy

which is the equation of a cone of the second degree whose
vertex is at the point {x, y, z). See Art. 34.

A point at which -r- ,
-,— and -^r all vanish is called a^ ax dy dz

singular point on the surface, and the cone (2) is called the

tangent cone at that point.

98. In the case of Art. 96 we see that all straight lines

whose direction-cosines satisfy (4) meet the surface in two

coincident points. If we take I, m, n such as to satisfy both

the conditions

,dF dF dF ^

dx dy dz

d'F

dx
5+m'

d'F . d'F
,2

4-n
dz'dy'

d'F
^ ^ , d'F

+ 2mn -—- + 2no
dy dz dz dx

+ 21771
fF_
dxdy

=

\ ...(1)>
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the straight lines whose direction-cosines are obtained from

these equations meet the surface in three coincident points.

They are therefore tangents to the curve in which the tan-

gent plane meets the surface. This curve, therefore, has a

double point at the point of contact, since the above equa-

tions in general give two values of the ratios Z : m : n, which
values may be possible or impossible.

If the surface be of the second degree, the two straight

lines given by (1) lie wholly on the surface, and are possible

if the surface be a hyperboloid of one sheet or a hyperbolic

paraboloid, and impossible in other cases.

99. The equation of a surface is often given in the form

^ =/ (^> y)> or z -f {X, y) = 0.

-r , . dF

,

df dz dF

,

dz
in this case -r- becomes—/-or —7-

, -r- becomes—r-

,

ax ax ax ay ay
dF

and -y- becomes unity. The equation of the tangent plane

becomes therefore

dz dz
It is usual to denote the quantities -1- and -j- by the

letters p, g, and the quantities -r-^ , x^ ' ;7~7r ^^ *^^ letters

r, t, s, respectively.

100. The equation of the tangent plane being

,
,

,dF , , -.dF , , .dF ^

the length of the perpendicular on it from the origin is

dF dF dF
dx "^ dy dz

/(IF

\dx. +f'^v+(Sy
(!)•

dy)



ON TANGENT LINES AND PLANES. 121

The letters U, V, W are frequently used to denote

dF dF dF
dx ' dy ' dz

^

and the letters u, v, w, u\ v\ w to denote

^ d^F d'F dlF_ ^F_ d^F

dx^ ' dy^ ' dz^ ' dydz' dz dx ' dxdy'

respectively. With this notation the above expression be-

comes

JJx^Vy^Wz
JU'+V'+ W (2).

If we take the form of the equation in Art. 99, the length

of the perpendicular is

z-px-qy
Jl+p' + q'

^'

101. As an example take the tangent plane at any point

(x, y, z) of an ellipsoid whose equation is

£C^ V^ ^
-2+f:. +-2 = 1 (1).
a ^ ^

Here ^=??, V=% . W=^;
a b c

and the equation of the tangent plane is

(^' - ^)f2 + (y - 2/)I + (^' - ^) ^2
= 0,

XX yy zz_x y ^ _-,

i

The equation of every plane can be expressed in the form

Xx + fjuy' + vz'=p (3),

where p is the length, and \, /jl, v are the direction-cosines, of

ithe perpendicular on it from the origin.
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If we suppose (2) identical with (3), we get

(4),

\ _fJb _v _p
X y z L

^ P ?

And the equation of the tangent plane becomes

Xa;' + ixy -f vz = Ja'X' + 6V + c'v' (5),

a form which is often useful.

The length of the perpendicular on (2) from the origin

1

V f z^

'

The values of X, fju, v the direction-cosines of this perpen-

dicular are —^,-^,-^ by (4), and the co-ordinates of the

9 2 2

foot of this perpendicular are consequently ^--^
, -jr , —^ •

102. The equation of a paraboloid being

T + ? = ^ ^^>'

the equation of the tangent plane at {x, y, z) becomes

(x-x)-'^{y'-y)-j(z-z)=0,

or x—-j-.y-Y.z=x—^ y = — x,

or
• ^,y' + ^.z' = x+x (2).
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This can be put into another form, for comparing it with

\x + fiy + vz = p,

Lb V \ p

p III I'v

and therefore from (1),

' .2

and the equation of the tangent plane becomes

4\
Xx'-\-^y' + vz' = - ^

,^ (3).

103. The normal to a surface at any point is the straight

line drawn through that poi?it perpendicular to the tangent

plane.

The equation of the tangent plane at {x, y, z) is

. , . dF . , . dF . , . dF

and the equations of a straight line through the point {x, y, z)

perpendicular to this plane are

x—x_y—y_z—z , .

dx dy dz .

These are therefore the equations of the normal.

The equations of the normal to an ellipsoid at the point

(a?, y, z) are

g^ {x - x) ^ h^y'- y) ^ & (z - z)

X y z '
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If we take the equation of the surface to be

the equation of the tangent plane is

z-z-p{x'-x)-q{y' -y)=0,

and the equations of the normal are therefore,

X -x+p[z-z) = 0\

y-y + q[z-z)=0] ^-^'

104. The equation of the tangent plane to a surface

F{x,y,z) = Q (1)

at the point (^, y, z) is

, , . clF , , , dv , , . dF -

If this plane pass through a point whose co-ordinates are

a, yS, 7, we have

, . dF . ^ , dF , . dF ^ ,-v(a-.)^ + (^-2,)^. + (T,-.)^^=0 (2).

This relation is satisfied by the co-ordinates of all points,

the tangent planes at which pass through a given point

(a, /3, 7). It is the equation of a surface which by its inter-

section with (1) determines the points of contact of tangent
planes to (1) drawn through (a, y&, 7).

105. We can shew that all these points of contact lie on
a surface of the degree next below that of the original surface.

For let F {x, y, z) be of the p^^ degree, and let us assume

F {x, y, z) = 11^ -j- 'Up_^ + Wp_2 + . . . 4- 2^2 + z/j -h Mo,

where u^, u^_^... denote the terms of the y^, {p — Vf^... de-

grees respectively.

Then the points of contact are determined by (1) and (2),

and the latter may be written

^dF dF dF_^dF ^ dF ^dF
dx dy dz dx dy dz

'
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But by a well-known theorem (see Todliunter's Diff. Calc.

Chapter viii. Ex. 3),

du„ du^ du„

dF dF dF
, \.

But for all the points of contact we have

F {x, y,z) = 0;

therefore =pUp -\-pUp_i + • • • +pu^ +pu^ +P'^a (4).

Subtracting (4) from (3) we get

dF dF dF ^ / ox / -.N

^n^^y'd^'^^jz
=~^^- ~^v2-----(p-2K-(p-i)^-p%

and equation (2) becomes

dF L. dF dF _, / -1 \ /-v / K \

Now ^-
, ^— , ^— are of the ( » — 1)*^ degree, conse-

dx dy dz x/^ / 8 >

quently (5) represents a surface of the (p — Vf^ degree.

If the original surface be of the second degree, all the

points of contact lie in a plane.

106. The equation of the tangent plane to an ellipsoid

at the point {x, y, z) is

x'x y'y zz _ -

If this pass through a point (a, P, y), we must have

^ + F"^?--^ ^^^'
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a relation which is satisfied by the co-ordinates of all the

points of contact, and which is therefore the equation of the
plane of contact.

The plane (1) is called the polar plane of the point (a, j3, 7)
with respect to the ellipsoid : and (a, yS, 7) is called the pole

of the plane (1).

If all the points in which (1) cuts the ellipsoid be joined

with (a, ^, 7) the joining lines will form a cone, and will all

touch the ellipsoid, since each of them lies in the tangent
plane at the point where it meets the surface. This cone is

called an enveloping cone.
•

Conversely, if at all points at which any plane cuts an
ellipsoid, tangent planes be drawn, these planes will all meet
in one point, which is the pole of the cutting plane.

If a series of planes be drawn passing through a fixed

point and cutting an ellipsoid, the poles of these planes will

all lie in a fixed plane which is the polar of the fixed point.

Let (a, /S, 7) be the fixed point, and (x, y, z) the pole of any
plane through (a, yS, 7).

The equation of the polar of {pc, y, z) is

XX yy z'z _'t

If this plane pass through (a, /S, 7) we must have

^2 + J2
+ ^2 - -L>

which shews that {x, y, z) lies on the polar of (a, /3, 7).

If a series of planes be drawn passing through two fixed

points and therefore through a fixed straight line, the poles

of these planes will all lie in each of two fixed planes which
are the polar planes of the two fixed points, that is, they will

all lie in a fixed straight line.

Similar results hold for all the surfaces of the second

degree.



ON TANGENT LINES AND PLANES. 127

107. The equation of the enveloping cone can be found
by a process similar to that adopted in Art. 34. The equa-
tions of any generating line can be written

''-^ = y^ll =l^ = r (1),
L ra n ^

and the equations of the curve of contact are

By substituting for w, y, z from (1) in the equations (2)
their values a -f h\ /3 + mr, 7 + nr and eliminating r, we
obtain a relation which I, m, n must satisfy in order that the
line (1) may pass through some point of the curve (2).

The equations (2) can be reduced to one equation of the
^tii degree, and one of the {p — 1)*^, and the result of substi-

tuting for X, y, z from (1) will therefore be

where A^ is a homogeneous function in I, m, n of the ]f^ de-

gree, J.^_i and Bp_^ are homogeneous functions of the (j9 — Xf^
degree, and so on.

The equations (3) can therefore be expressed in the form

a; {nrf -f- A\_lnrY-^ + . . . + ^>r + ^^ = 0,

^Vi (^^)""' + B\_lnry-' -h . . . + B;nr -{-B,=0,

where AJ, A'^_^, ---A^, A^, -S'^-i> •••^/j ^0 ^^^ functions

of -
,
— , and the result of eliminating^ nr between them will

n n °

be of the form

\n nj

and the equation of the cone is therefore

^ \Z - ^ Z - r^J
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108. In the case of an ellipsoid the equation of the plane
of contact is

— + Tr + -^-l = (1),
a c ^ '

and we have to substitute % + h\ y5 + mr, 7 4- ni\ for x, y, z

in (1), and in the equation of the ellipsoid

/
-2 + 71 + ^=1 (2).

We thus ofetO'

(al /3m yn\ a^ /^^ 7^ -, ^

J fl' m^ n\ 2 - /Oil l3m 7?

A

+ -UC + ^'-l = (4);
a b' c

and substituting for ?- from (3) in (4) we obtain

This is the relation which /, m, n must satisfy in order

that the strai^rht line

I m n

may pass through some point in the curve of intersection of

(l)\and (2).

The equation of the enveloping cone is obtained by sub-

stituting x — a, y — ^, 2 — 7 for I, m, n, and is therefore

^ f(£-a)»
,
(y-m^ ,

(^-7)7]'f(^-^^(^^^(^-7)7r
(6).[a b c J
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109. This equation can be obtained in another form b}^

the aid of the following proposition.

Let >Sf = be the equation of any surface of the second

degree, and let ^t = 0, ?; = be the equations of two planes.

Then the equation

S + \uv = (1),

where X is some constant, w^ill represent any surface of the

second degree passing through the curves of intersection of

S = with u = and v = 0. For if >S' = be the equation of

any such surface, it is evident that S' cannot assume any
other form than k (S + \uv) consistently with the suppositions

that it is of the second degree, and is satisfied by all values

of X, y, z which make S and u vanish simultaneously, and
also by all values which make >S^ and v vanish.

Again, if we suppose the plane u — O to change its position

so as to coincide wdth v = 0, the equation (1) represents any
surface touching S = along the curve in which the latter is

cut by v = 0, and becomes

Hence the equation

-. + p + ^.-l+X^^ + ^.+^-lj -0 (2),

represents any surface of the second degree touching the
ellipsoid at all the points of contact of tangent planes through
{a, 13, 7). If we take X such that (2) shall pass through
(a, P, <y) it must represent the enveloping cone. Substituting

a, 13, <y for X, y, z, we get

a c \a c )

Whence the equation of the enveloping cone becomes

This equation can of course be deduced from that of the
last Article.

A. G. 9
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110. If we suppose the point (a, /?, 7) to recede from
the origin to an infinite distance, the cone will ultimately

become a cylinder whose generating lines are parallel to the

line joining {a, /S, 7) with the origin. This is called an en-

veloping cylinder, and the equation of any such cylinder can

be found from that of the cone, by putting a = \k, /3 = fiJc,

7 = vk, where \, /jl, v are the direction-cosines of the generat-

ing lines, dividing by the highest power of k, and then mak-
ing k infinite. The equation of the enveloping cylinder of

an ellipsoid deduced in this manner from either of the equa-

tions in Arts. 108, 109 is

(:

x^ y^ z^ -, \ /X^ y^ v\ (\x iiv vzV

111. The equation of the cylinder which envelopes a

given surface

i^(^,2/,^) = (1)

can however be obtained independently of the enveloping

cone.

For let \, fjL, V be the direction-cosines of one of the gene-

rating lines ; x, y, z the co-ordinates of the point where it

touches (1). Then since this generating line of the cylinder

is a tangent line to (1) at {x, y, z), we must have

dx dy dz

This equation combined with (1) gives the locus of the

points at which the enveloping cylinder touches the surface,

and we have only to find the equation of a C3dinder with its

generating lines in a given direction, and passing through the

curve given by (1) and (2), which can be done as in Art. 35.

\i X
y y\ z be the co-ordinates of any point in the gene-

rating line which touches (1) at the jDoint {x, y, z), we have

X — X 11' — ^1 z — z 7= = —— k suppose,
A, ^ V

or X = X 4- \k, y = y' + p-k, z = z -\- vk.

Substituting these values of x, y, z in the equations (1)

and (2), and eliminating k between the two equations, we get
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a relation between x\ y' , z which is the equation of the en-

, veloping cylinder,

112. In the case of the ellipsoid, the curve of contact is

determined by the equations

2 2 2

1- — -I— =1
a c

\X LLII VZ
h^-^ -^— =

a c

Putting x' + \7c, y + jik, z + vh for x, y, z we get

— + 72 + ^-1 +2— + 9I-+^U'+- + 72
+ -2^=^^

a G \a c J \a b cj

Substituting for Iz from the second in the first we get

'2 '2 '1 \ /-v 2 2 2\ /-v ' ' '\ 2
y z \ \ yiT v\ _ l\x ixy vz y

:he same equation as we obtained in Article 110.

+ -F+0''

113. Let the equation of a surface be given in the form

.^ ('A yS, 7, S) = (1),

where a, /3, 7, S are the lengths of the perpendiculars from
liny point on the four faces of a tetrahedron, and let any
jtraight line be drawn through the point {a, /3, 7, S). Then
f a, /3', 7', 8' be the values of a, 13, 7, S for any other point in

ihe line we shall have by obvious geometry

a -a ^ ^'-l3 ^ y -y ^ 8' -8
^j^

.

I 7)1 n q

vhere I, m, n, q are the cosines of the angles between the
iine and the perpendiculars on the four faces of the tetrahe-

Iron, and k is the distance between the two points.

We obtain the value of 7c for the points where the line (2)

Ineets (1) from the equation

<^ (a + Ik, 13 + mk, 7 + nk, 8 + qk) = 0,

9—2
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or .^(.,/3,./,S) + Z;(^g +mg +4n4g
+ Ak' + Bk' + ...=0 (3). '

This equation gives as many values of Jc as the degree of

the equation (1).

Smce (oL, /5, y, 5) is a point on (1), ^ (a, /S, 7, 8) vanishes,

and one value of k is zero. If I, m, n, q be restricted by the

relation

defy ^*
, ,,

^*
, „ f^* _

two values of k vanish, and the line (2) is a tangent line to

(1) at (a, yS, 7, B). Hence eliminating I, m, n, q by means
of (2) the equation of the locus of the tangent lines at

(a, ft 7, B) is

or

, d6 ^, d(b
,

,d6
, ^, d6 d6

,
add) ^

(^^
, ^ f?</>

But the expression (j) {% /S, 7, 8) may be supposed homo-
geneous, since if it be not, it can be made so by means of

the relation given in Art. 26; and if it be of the ^^'' degree,

we have by a well-known formula

since the point (a, /?, 7, 3) is on the surface (1). Hence the

equation of the tangent plane at (a, /3, 7, S) becomes
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EXAMPLES. CHAPTER VIII.

, 1. Find the locus of the point of intersection of three

i

tangent planes to an ellipsoid which are mutually at right

angles.

2. Find the locus of a point which moves so that the

locus of the centre of the section of an ellipsoid by its polar

plane W'ith respect to that ellipsoid is a similar and similarly

situated ellijDsoid whose axes are each half of the correspond-

ing axis of the original ellipsoid.

8. Shew that the polar equation of the locus of the foot

of the perpendicular from the origin on the tangent plane to

an ellipsoid is

r^ = o? sin^ Q cos^ ^ + 6^ sin^ 6 sin^ <^ + c^ cos^ 6.

4. Find the equation of the locus of the foot of the per-

pendicular from a point (a, /3, 7) on the tangent planes of the

ellipsoid

5. Find the equation of the locus of the poles of all

tangent planes of the ellipsoid222X If z
V— 4- - =1

with respect to a sphere whose centre is at the point (a, /3, 7)
and whose radius is h.

6. Shew that in general six normals can be drawn
through a given point to an ellipsoid, and that these six all

lie on a cone of the second degree, three of whose generating

lines are parallel to the axes of the ellipsoid.

j

7. If normals be drawn to an ellipsoid

0^ ip- z^ ^

V - A— = 1
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at the points v/here it is cut by the cone

I 111 n ^
- + - + - = 0,
X y z

prove that these normals all pass through a diameter of the

ellipsoid.

8. In an ellipsoid whose semi-axes are a, h, c, plane

sections are drawn so as always to touch a confocal ellipsoid

(see Art. 160). Shew that the centres of these sections

always lie on a surface of the fourth degree which intersects

the ellipsoid in the cone
2 2 2

30 y z

a' + 6' + ? =
0-

9. Prove that through any central radius of an ellipsoid

one plane can be drawn cutting the ellipsoid in a curve of

which that radius is a semi-axis. Shew that if it be so for

more than one section it must be so for all such sections.

10. On a plane section of a given ellipsoid as base two
cones are constructed of which the vertices are the centre

of the surface and the pole of the section. If the ratio of

the volumes of these cones is constant, prove that each of

them is constant ; and find the volume when the ratio is one
of equality.

11. Find the locus of a luminous point, in order that the

boundary of the shadow of an ellipsoid cast by it upon a given

principal plane may be circular.

12. Prove that the right circular cylinders described

about the ellipsoid

^' f ^'
-,— -4- "^

-I = 1
a^ ¥ c

h being the mean semi-axis, are represented by the equation

(h'- c'jaf- (c'- a') if+ {a'- h')z'± 2 (a'^- h') ' (b'- c') ' zx= (a=-&)¥.

13. The shadow of a ball is cast by a candle on an in-

clined plane in contact with the ball
;

prove that as the

candle burns down, the locus of the centre of the shadow is

a straight line.
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14. Find the equation of the tangent plane to the sur-

face

ccyz = a^,

and the volume cut off by this plane from the axes.

15. Find the equation of the tangent plane at any point
of the surface

Z 2. 2. 2.

oc''^ + y^ + z^ = a^.

Find also the length of the perpendicular on it from the

origin, and the area of the triangle intercepted on the tangent
plane by the co-ordinate planes. Shew that the sum of the

- squares of the intercepts on the axes of co-ordinates is con-

stant.

16. Find the equation of the enveloping cone of the sur-

face By"^ + Cz^ = x, whose vertex is at a point (a, /3, 7).
I

17. Find the length of the normal at any point of an
ellipsoid cut off by the plane of xy. Find also the co-ordi-

nates of its point of intersection with the plane of xy.

18. Find the equations of the normal at any point of the

surface

By'' -f Gz"" = X.

Find the locus of the points in which the normals to the
surface drawn at all points of its intersection with the plane
x = a cut the plane of yz.

19. Shew that the points on the surface

xyz = c^

at which the normals intersect a fixed line

X — a _y — _z — y
I m n

ill lie on the surface

^ [my — nz) + /3y [nz — Ix) -\- yz (Ix — my) = x^ [my — nz)

-h 2/^ {iiz — Ix) -f- z"^ (Ix — my).
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20. Find the locus of the point of intersection of three

tangent planes to a paraboloid which are mutually at right

angles.

21. Find the equation of a surface of the second degree

which passes through all the points of contact of tangent
planes drawn through an external point (a, /3, 7) to the

surface

x^ -\-y^ -^-z^ — oxyz = c^

and discuss its nature for different positions of (a, /3, 7).

22. Find the equation of a surface of the second degree

which passes through all the points of contact of tangent

planes drawn through an external point (a, yS, 7) to the

surface

xi/z = a^,

and discuss its nature for different positions of {a, /3, 7).

23. Find the equation of the locus of the foot of the

perpendicular from the origin on the tangent planes of the

surface

Bf + Cz" = X.

24. Shew that the plane

Ix + my + ?2J =

will touch the cone

Ax'' + Bif-^Cz'' =

if I, m, n satisfy the condition

r m' n^ ^

25. Shew that the axes of a central section of the ellip-
3 a 2X 11 z

sold -2 + ;7 + "i
= 1 hy a plane parallel to the tangent plane

at (a, P, 7) are given by the equation

r' - {a- + h' + c'-a'-/3'- r) r +
'''^^' = 0,

where p is the perpendicular from the centre on the tangent

plane.
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26. If a line cut two similar and co-axial ellipsoids in

P, P
; Q, Q'

; respectively, prove that the tangent planes to

I the former at P, P' cut those to the latter at Q or Q' in pairs

of parallel straight lines equidistant res]Dectively from Q
or Q'.

27. Find the condition that two spheres may intersect

at right angles.

28. Four spheres whose radii are a, h, c, d intersect at

right angles, shew that the volume of the tetrahedron whose
ano'les are their centres is

i i 1 1
-2 + ^-^ + ^^ + ^JaMA/-2+75+:7^+ 72

29. The centre of a sphere bisects the shortest distance

between two given straight lines and a tangent line to the
sphere passes through each of the lines: shew that the point
of contact lies on a hyperbolic paraboloid.



CHAPTER IX.

ON CURVES IN SPACE.

114. We have seen (Art. 16) that any two equations

since they are satisfied by the co-ordinates of all the points of

intersection of the surfaces represented by each equation, will

in general represent a curve.

These equations can be reduced to the form

^=^^!'^'!1
(2).

by eliminating y and z in turn between the two equations

(1). It may be noticed that the two equations (2) will in

some cases represent a curve not included iu (1). For in-

stance, if the two equations (1) were of the first and second
degrees respectively, by eliminating ?/ and z in turn we
should get two equations of the second degree, and the first

two equations would represent one plane curve, while the

second pair would represent the original curve, and another
plane curve besides. (See Art. 95.)

Assuming x to be any arbitrary function of a new vari-

able t, the equations (2) can be replaced by the three

x = <f>{t), y==^lr{t), z = xif) (3).

This third form possesses many advantages from its sym-
metrical character, and we shall in general use it.
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115. As an example the pair of equations

Ax-vBy+ Gz = D\ ,.s

A'x + B'y + Cz = D'] ^ ^

represent a straight line.

Eliminating y and z in turn we get the two equations

A'B-AB' B'D-BD'^
^ BG-BG'^'^ BG-BC
^ G'A - GA' GU - CD

y R'/^ Tin' "^ "^

y (2),

> ... (3),

B'G - BG' ' B'G - BG j

which correspond to the form (2) in the last Article.

Lastly, assuming x = (B'G — BG') t, we get

CD' — G' J)

x=[EG- BC) t,y = [G'A - CA') t + j^f^, _^^

z = {A'B - AE) t +5§^'
which correspond to the form (3) in the last Article.

116. The curves of the most frequent occurrence and
greatest importance are plane curves, the discussion of which
properly belongs to plane geometry. As an instance of a

curve not plane we may take the helix.

This is the curve formed by the thread of a screw. It

may be produced by wrapping a right-angled triangle round
a circular cylinder, the base of the triangle being at right

angles to the axis of the cylinder.

Take the axis of the cylinder as axis of z, a plane through
the base of the triangle as plane of xy, and a line through the

• acute ancrle at the base of the trianofle as axis of x.

Let be the origin ; x, y, z the co-ordinates of any point

\P in the curve, a the radius of the cylinder, 9 the angle AOM
between the axis of x and DM the projection of OP on the
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H r

plane of xy, and a the acute angle at the base of the triangle. W'

"We obtain without difficulty,

X = ON = OM cos 6 = a cos 6,

y — MN= OM sin ^ = a sin ^,

z = PM = arcAM x tan ol = a6 tan a,

Whence

or if a tan a = c,

a; = a cos 0, y = asinO, z = c9

z z
x — a cos -

, y = a sin -

,(1).

(2).

Either (1) or (2) may be considered as the equations of

the helix.

117. The limiting position of the straight line joining

two points of a curve when the second point moves up in-

definitely near to the first, is called the tangent to the curve

at that point.

Let the equations of the curve be

^ = ^{0> 2/ = tW, ^ = %(0 (!)>

and let t and i + t be the values of t for two points on the

curve. The equations of the straight line joining these are

'o'- <j> (0 ^ _y'^:^irj) _ z-x(t)
^(t + T)-<j>(t) ^Ir it + t) - ^|r (t) % U + TJ - %W '
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x\ y , z being current co-ordinates
;

or

T

But when r is diminished indefinitely the two points

coincide and the straight line joining them becomes the

tangent at (^, y, z). Also the limit of —lAJ {^
T

doc
i
<^' (t) or

-J-
, and similarly for the other denominators.

Hence the equations of the tangent at {x, y, z) are

X — X _ y' — y _ z' — z

dx dy dz

dt dt dt

(2).

118. The length of the chord joining two jDoints {x,y, z)

and {x^,y^, zj is

J(x^-xy+{y^-yy + {z^-zy.

But by Newton (Section I. Lemma vii.) when the two points

approach indefinitely near to each other, the ratio of the arc

to the chord becomes ultimately a ratio of equality. Hence
if s and 5 + 85 be the lengths of the arcs measured from some
ifixed point up to the points {x, y, z), (x^, y^, z^) respectively,

the fraction

J{x, - xf + (y, - yf + {z^ - zf

becomes ultimately equal to nnity, or

e)"=e/-s)"-(i)" ('
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From tliis result we see that the cosine of the angle which W
the tangent at (x, y, z) makes with the axis of x, which by

J?
Art. 17 is

dx

"eft

j^
dx^ fdy^ /dzV

Jt)
"^

\dt)
"^

\dt)

dx

1 , dt dx
is equal to — or ,- .^

ds^ ds

di

And similarly, the cosines of the angles which the tan-

gent makes wdth the axes of y and z are -y and -j- re-

spectively.

fdsV
Dividing hy I

-y^J
the equation (1) reduces to the form

©+(S)"^(S)'=' »
119. Any straight line through the point (x, y, z) per-

pendicular to the tangent is called a normal line. All

such lines lie in a plane through {x, ?/, z) perpendicular to

the tangent, which is called the normal plane. Its equation

is at once seen to be

(-'-)5+(y-2/)S+(^'-)J=o.

120. It is always possible to draw a plane through any
three points of a curve. The limiting position of this plane

when two of the points move up indefinitely near to the

third is called the osculating plane at that point.

Let the equations of the curve be

x = ^{t), y = f{t), z = xii) (1)'

and let t, t-hr, t + 2T be the values of t corresponding
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to three points on the curve. Let the equation of any
plane be

Ax+By+Cz=D (2).

If this plane pass through the three points t,t + T,t-{- 2t,

we have

Acl>(t) + B^lr{t) + Cxii) = D (3),

A(l>{t-{-r) + Bf{t + T) + Cx{t+T)=I) (4),

A<t> (t + 2t) + Bf(t + 2t) + Cx{t + 2t) = I) (5).

Subtracting the first of these equations from the second
we have

A {cp (t + T)-cj,{t)]+B{f{t + T)-ylr (t)}

+ O{x{t + T)-x[t)}=-0,

Or, dividing by r,

^^
cj, (t + t) -

(f,
(t)

^ ^ ^/^(^ + T)-^/.(0

T T

T

Subtracting twice the second from the sum of the first

and third and dividing by t^ we get

^ (^(^+2T)-20(^-fT)+(^ffl
^^ ^/rft + 2T)-2^/r(^ + T)4-^/r(O

T T

^

^,
X(t + 2r)-2x(t^r) + x(t) _^

But if we make the three points coincide, r vanishes,

md these two equations become (Todhunter's l)iff. Calc.

irt 127)

. dx ^dy ^dz ^

d'x dSj d'z _
^W^^W'^^df-^^ABC

'

' dy d^z dz d^y dz d^x dx d^z dx d^y dy die

^ df'Jtdt^ di~dt'~~dtde dtd^'^dtdf
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And subtracting (3) from (2) we have

Whence the equation of the osculating plane at the point'

(x, y, z) becomes

, , (dy d^z dz (Ty) , . [dz d^x dx d^z)
{X - X)

j-^^ ^p
-

j^ ^,| + (i/
- 2/;

1^^ df~JtW]

^^' ^^{dtdf dtdiy^-

121. The osculating plane is sometimes defined as the

plane which lies closer to a curve at a given point than

any other plane, and its equation is obtained in the fol-

lowing manner.

Let A{x'-x) + B{y-y) + C{z-z) = (1)

be the equation of any plane through (x, y, z). The perpen-

dicular on this from a point (x^, y^, z^) is

A {x^-x)+JH^,-y) + G{z^-z)

JA' \-B'-\- C

But if {x^, ?/j, z^ be a point on the curve correspondiDg

to a value ^ + t of ^,

_ dx t" d^x

'"'^'"'^'''dt^Xldf^

dy T" fZ^/
.

dz T^ d'^z

Hence the length of the perpendicular becomes
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And when r is diminished indefinitely, the succeeding

: terms are very small compared with the first and second,

, and the smallest value which this fraction can assume will be

t when A, B, G are determined by the equations

dt dt dt

. d^CG
-r,
d\

. ^ d^z ^

's whence we obtain the same result as in the last Article.

122. All straight lines drawn through the point (x, y, z)

. perpendicular to the tangent at that point are normals. That
: normal which lies in the osculating plane may be considered

as the normal drawn in the plane of the curve, and is called

the principal normal. The equations of the normal plane

and the osculating plane considered as simultaneous are the

equations of this line.

dx d^x
Writing for shortness x, x for -^ , -^ , and similarly

replacing the other differential coefficients, these are

(x ~x)x + {y-y)y + {z -z)z = 0,

{x - x) {yz - ijz) + {y - y) (zx - zx) + {z - z) {xy - xy) = 0.

If we put these equations in the form

X — X _y' — y _z — z

the value of P is

y {xy — xy)— i (zx — zx)

= x(yy + zz)-x(f+2^).

But by Art. 118,

s' = x' + f-\-z'',

therefore differentiating,

ss = XX + yy + zz.

A. G. 10
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Hence P = d) {ss — xx) — x (s^ — x^)

= s {xs — xs)
;

and similar values may be found for Q and R. Hence the

equations of the principal normal are

X — X _ y —y _ z — z

xs — xs ys ^ ys zs — zs

which may be written in either of the forms

X — X _ y — y _ z — z

d ldx\ d (dy\ d fdzX
"

dtVdsl dt [dsj dt Vds)

(1),

X — X
or ^-^ (2).

d^x d^y d^z

ds:^ ds^ ds^

123. The equations (2) of the last Article can also be

obtained as follows.

If \ fi,v; X\ [X , V be the direction-cosines of two straight

lines, the direction-cosines of the two straight lines which

bisect the angles between them are proportional to A, -i- X',

/z- H- yLt', V -\-v and X — \\ /x — /j!, v — v.

For planes through the origin perpendicular to the two

given straight lines have their equations

\x -\- fiy + vz =^ (1)

and l^x + iJiJy + vz — (2) respectively.

By Art. 26 the equations of two planes which bisect the

angles between (1) and (2) are

{\ + X)x+{tL+ii)y+{v-\-v)z = 0,

(\-\') X -[- (fjL
-

fji') y + {v - v') z = 0.

And the direction-cosines of the normals to these planes,

which are evidently parallel to the bisectors of the angles

between the two original straight lines, are proportional to

X -f V, A6 + /Lt', 1^+1'' and \ - V, fi- fi', v - v respect-

ively.
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If I, m, n be the actual values of the direction-cosines of

the latter line, we have

, A/ — A,

V2-2cos^ ^ ^

if 6 be the angle between the two straight lines.

124. Let now X, fju, v be the direction-cosines of the
tangent to a curve at the point {pc, y, z), and X',

fj!, v their

values at an adjacent point on the curve distant hs from the
former. Then ultimately if the two points be made to

approach indefinitely near to each other and coincide, of

the two bisectors considered in the last Article, the one
will coincide with either tangent, and the other will be
the principal normal. The former will evidently have its

direction-cosines proportional to X -|- V, yu< -j- yu,', v + v , and
the latter must have its direction-cosines proportional to

X — \',
fjj
— fjLy V — v .

dX
But X' = X+-T- Bs + terms involving (Ssf

^=^ + _8, +

/ dv ^
V = V + -r OS +

as

Hence the direction-cosines of the principal normal are

proportional to 37- §5, -J^Ss, -^ Ss, or to -^ , -^ . —^ and
as as as ds ds ds

doc du n z
putting for X, yu,, v their values -^ , -^ , -- the equations

of the principal normal become as before

x —X _y —y _z' —z
"Wx IFy d'z '

ds^ ds^ ds^

10—2
/
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125. If the curve be a plane curve, the equation of the
osculating plane must reduce to the equation of the plane in

which the curve lies. Hence the ratios

'dyd^z dz d^y"

Mde~~dt'dej
dzd^x dxd^z\

^

(dxdj^y dy dj^x^dy d x\

dt df dt dtV ' \dt df ~didf)

must be constant for all points on the curve.

0^(

We may therefore assume

yz-yz = \v (1),

zx — zx = fxv (2),

xy — xy—vv (3),

where \, /jl, v are constants, and v some function of t.

Eliminating X, ^ and v from (1) and (2) by differentiating,

we get

{zx — zx) {yz — yz) — {yz — yz) (zx — zx) -
•

or reducing and dividing by i,

X (yz — yz) + y (zx - zx) + z {xy - xy) = 0,

which may be written

dx
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whence the relation (4) follows. We must also have

for all values of n. But this will be the case if equation (4)

is satisfied for all points in the curve, as may be seen by
differentiating.

126. If a curve he dratun on a given surface such that

the inclination of its tangent to a given fixed plane is always

greater than that of any other tangent line to the surface at

the same point, the curve is called a line of greatest slope to

the given plane.

Let F(x, y,z) = (1)

be the equation of the given surface, and let

Ax + By + Cz = D (2)

be the equation of the given plane.

The direction-cosines of the tangent line to the curve at

. , . . dx dy dz
anypomt(^,2/,^)are^,^,^.

The equation of the tangent plane to (1) at {x, y, z) is

, , > dF , , . dF / , ^ dF ^(^'—)5-+(2/-2/)^ + {^-)^=0,

and the direction-cosines of the line of intersection of this

iplane with the plane (2) are proportional to

dF_^dF^ (jdF_^dF j^dF_^dF
dz dy ' dx dz' dy dx'
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and it is evident that the tangent line to the curve of greatest

slope must be perpendicular to the intersection of the tangent

plane with the plane (2), whence we get

as \ dz ayJ ds\ ax dzj ds\ dy dxj

The integral of this equation united with (1) gives the

curves required. The integration will introduce one arbitrary

constant which is determined if one point on the curve be

known. Hence, a line of greatest slope can be drawn through

any point on the surface.

If the given plane be the plane of xy^ -4 = 0, 5 = 0, and

the equation (3) becomes

dF dy _dF dx _ ^
dx ds dy ds

dFdy_dF_ .

dx dx dy

As an example of the last case take the equation of the

ellipsoid

^2 yi £2

-2 + f2+-2 = l (5).
a DC

Equation (4) becomes

a'dx ¥ '

•*• ~2 ^^S y ~ T? ^^o ^ ~ constant

;

,\ y = mx^' (6).

This equation united with (5) gives the lines of greatest

slope. 1£ a = b, (6) becomes

y = 7}ix,

so that in the case of a spheroid the meridians are the lines

of greatest slope to the plane of circular section.
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127. We shall devote the remainder of this Chapter to

the discussion of the curvature of curves in space. This is of

two kinds, the first being the curvature of the curve con-

sidered as lying in its osculating plane, and the second, the

curvature by which it leaves the osculating plane, which is

called the curvature of torsion. On this account curves in

space are called curves of double curvature.

Before proceeding to the formulae relating to the two
kinds of curvature at any point of a curve some geometrical

explanations and definitions must be given.

Let PQ, QR, BS, ST, ... be a series of lines of equal

length, which when their length is diminished indefinitely

become ultimately small portions of a continuous curve. Let

p, q, r, s ... be their middle points.
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Through p let a plane be drawn perpendicular to PQ and

through q, r, s ... planes perpendicular to QR, RS, ST, . .

.

respectively. These will ultimately be normal planes to the

curve at consecutive points. Let the planes through p, q
intersect in a line AE, and the planes through q, r in a line

BF which cuts AE in some point A, and so on.

Let the plane which passes through P, Q, R meet AE
in Oj, and the plane through Q, R, 8 meet BF in 0^. It is

evident that the point 0^ is equidistant from P, Q and R,

and a circle with centre 0^ and radius O^P will pass through

Q and R. This circle will ultimately pass through three

consecutive points of the curve, and lies in the plane PQRO^,
which is ultimately the osculating plane at Q. Hence it is

the circle of curvature of the curve considered as a plane

curve lying in the osculating plane. It is called the circle of
absolute or circular curvature, and the point 0^ is called the

centre of absolute or circular curvature.

Again, all points in the straight line AE are equidistant

from the three points P, Q and R. All points in the straight

line BF are equidistant from Q, R and S. Hence the point

A, where AE and BF meet, is equidistant from the four

points P, Q, R, and S, and a sphere with centre A and radius

AP will ultimately pass through four consecutive points of

the curve. The point A is called the centime of spherical

curvature, and the length AP the radius of sphencal curva-

ture.

The lines AE, BF, GG ... ultimately generate a surface

which is touched by the normal planes of the curve, and the

ultimate intersections of these lines produce a curve which

is called the edge of regression of this surface.

128. The locus of the centres of absolute curvature is

not an evolute, but an infinite number of evolutes can be

drawn on the surface generated by the lines AE, BF,... For

let Oj be any point in AE, and let pO^, qO^ be joined and

qO^ be produced to meet BF in u
;
join ru and produce it

to meet CG in v
;
join sv and produce it to meet DH in w,

and so on. We have

0,P = O^q
;
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vu + uO^ + 0,p = vu-{- uq = vu+ ur = vr,

Hence if a string be laid along the curve luvuO^ and its

end be at p, as it is unwrapped this extremity will pass

through qrst... and describe ultimately the original curve.

An evolute can thus be found passing through any point
of any one of the lines AE, BF...

129. The centre of absolute curvature may be defined as

the point where the line of intersection of two consecutive

normal planes meets the osculating plane.

Let the equation of the normal plane at a point {x, y, z)

be denoted by

^© = (1).

Any other normal plane can be represented by

-P(O = (2),

where t^ is the corresponding value of t

At the points where (1) and (2) meet, we have

F{t,)-F{t) = 0,

F{Q-F(t) „
or —^ ^ = 0.

And this latter equation when ^^ — ^ is indefinitely diminished
becomes

f=» «.

Hence the line of intersection of two consecutive normal
planes is given by the two equations

Fit) = 0, f =0.

But ^(0 =
(.'-.)J

+ (,'-,)|+(/-.)g,
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dF , , .(Fee , , .d^y , , .^z fdxV fduV fd:

2
, , . d'^x , , . d^ij , , .dj^z /ds\'^

Hence tlie line of intersection of two consecutive normal
planes is given by

(x'-x)x+{y'-y)y+{z-z)z = (4),

(x' — x)x + (y -y)p -^(z -z)z = ^^
(5).

The point where this line meets the osculating plane is

given by (4) and (5) united with

{x-x)(yz-yz) + (y-y)(zx-zx)+ (z'-z){xy-xy) = 0.,.{6).

From (4) and (6) we obtain as in Art. 122

X -X ^y' -y ^ z -z
^

x's — xs ys — ys zs — zs

and by equation (5) each of these fractions is equal to

s"

2
{x^ + y^-\-'z^)s-ss

m

J.
2

"2

Also each of them is equal to

(xs — xsY + {'ys — ys)'^ + {zs — zs)

P

Sjx^ + 7/' + ^ - S'

where p is the radius of absolute curvature.

Hence

<ds\'p
r'(S)"HS)'HS)"-{S)' <»'•



ON CURVES IN SPACE. 155

or if s be taken as independent variable,

i fd'x\' fdyV fd'zV

Equation (9) or (10) gives p, and equations (7) and (8)

give a)\ y\ z the co-ordinates of the centre of absolute cur-

vature.

130. The results of the last Article can be obtained by
means of the formulae proved in Article 123.

For if Zs be the arc between two points of a curve, Q the

angle between the tangents at those points, and X, yu,, v\

X, /jl\ V the direction-cosines of those tangents, we have

p = limit
-J

,

when Ss is indefinitely diminished.

Also if I, m, n be the direction-cosines of the principal

normal, we have

1 d
I = limit of ^ (\ - V) cosec -

6

= limitof ^.^.—̂ = pg-=p^-^.

Similarly m =Pds^Pdf'

dv d?z

But also by Art. 6 if og', y\ z be the co-ordinates of the

centre of absolute curvature,

X —x=lp=p

^/-y=mp=p^

ds''

d^y

ds''
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z-z=np = p-^,,

whence squaring and adding and dividing by p*, we get

1 _ /^y /^y (cVz-^

131. To find the centre and radius of spherical curva-

ture.

The centre of spherical curvature is the point in which
three consecutive normal planes intersect.

If F {t) = be the equation of any normal plane, the line

of intersection of this with the consecutive plane is given by

i^(0 = 0, and i^' (0 = (1).

And if F{t^ = 0, F' (t^) = be the equations of any other

line of intersection of consecutive normal planes, at the point

of intersection of these two lines,

m^) = (2).

And ultimately when t = t^ the four equations give

F(t) = 0, F'{t) = 0,

and from (2)

r'{t) = (3).

But

J"(0 =(^-)5 + (F-,)J+(^-.)J-gy=o {*)

These equations determine X — cc, Y— ?/, Z — 2, where

X, Y, Z are the co-ordinates of the centre of spherical curva-

ture. We get from them



— x = (

ON CURVES m SPACE. 157

ds d?s (dy d^z dz dy\dsV fdz d^y _ dy d^z\

di) [Jt'df'dtdfr'
-

dtdf \dt df dt dfj
dx dy dz

'di' 'di' ~di

d^x d^y d^z

If' df' df

d^x d^y d^z

di" df' df

and similar values for Y—y^Z — z. The radius of spherical

curvature R, which

is then known.

132. To find the angle and radius of torsion at any point

of a curve.

The angle of torsion (Se) is the angle between two con-

secutive osculating planes.

Let \ fx, V be the direction-cosines of the normal to one

osculating plane; then those of the normal to the osculating

plane corresponding to the value ^ + r of the independent

variable will be

d\ dfjL dv

And the sine of the angle between these lines is (Art. 8)

dv dLbV f dx ^ dvV / da d\^^

,(4)

But

dt] V dt '^ dt.dt

dz d^x dx d^z

+ i^*-^*

z\ _ 7 fdx d^y dy d'^x\

V' ""' [dtdf'lidf)'4t df dt df

, 1 _ I'dy d^z dz d^yV fdz d^x _ dx d'^zV
where p - l^^"^ "J^^^ j

^
\Jt~df

~
dt~df)

'dx d^y dy d^xV
^

{dt df dt df
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dv dfjL , o /dz d^x dx d^z\ (dx d^y dy d x^
V
dt ,dt df dt dfj \dt df

- P('
dz d' X

dt df

= * di

dx

di

d^x

d^x

dy

dt'

d\
df '

dx d^z'

dtdf,

dz

dt

d^z

df

d'z

dt dfJ

dx d^y dy d^x^

'dtdf~'dtdfj

df df df

.(1).

Whence the sine of the ang-le of torsion becomes

equal to
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dx
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Find also the length of the arc of (1) between two points

whose co-ordinates are given.

2. The equations of a curve of double curvature being

given, find the equation of the surface formed by making it

revolve round the axis of z.

Ex. x = a cos Q, y = asm6, z = c6.

3. A helix joins two points, the distance between which
is h, the angle between the tangent lines and the axis of the

generating cylinder being a given angle a
;
prove that if the

lenofth of the helix is a maximum, the helix has a constant
7,

lenofth, and that the radius of the generating circle is -^—-

,

where n is a positive integer.

4. A curve is traced on a right circular cylinder of radius

a, such that if the cylinder were unrolled into a plane the

curve would become a catenary whose axis formed one of the

generating lines, and directrix the base, of the cylinder.

Shew that

_ az^ _ az^

p, /3j being the radii of absolute curvature and torsion, z the

ordinate, s the arc measured from the vertex, and c the con-

stant of the catenary.

5. Find the equation of the osculating plane at any
point of the curve given by the equations

x + y { z = 1,

ax^ -f hy^ + cz^ = 1.

6. Find the equations of a curve traced on a sphere so

as to cut all the great circles passing through a fixed point

at the same angle.

7. Find the equations of the lines of greatest slope to

the plane of xy on the surfaces

(1) xyz = a^

/o\ a , x^ + y^
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8. Shew geometrically and analytically that if a sphere
be described concentric with a given ellipsoid, the tangent
line to the curve of intersection of the sphere and ellipsoid is

parallel to one of the principal axes of the central section of

the ellipsoid which passes through that tangent line.

9. Find the equations of a curve traced on a sphere, such
that the sum of the arcs of great circles joining any point on
it with two fixed points on the sphere, the arc joining which
is a quadrant, is constant.

10. Find the equations of a curve traced on a sphere by
a point which moves with constant velocity along the arc of

a great circle w^hile the great circle revolves with constant

velocity round a fixed diameter.

11. A point moves on an ellipsoid so that its direction of

motion always passes through the perpendicular from the

origin on the tangent plane to the ellipsoid at that point.

Shew that the curve traced out by the point is given by the

intersection of the ellipsoid with the surface

^m-n yu-i ^i-m ^ constant,

I, m, n being inversely proportional to the squares of the axes
of the ellipsoid.

12. Find the equation of a curve traced on a right cone
which cuts all the generating lines at a constant angle.

Find the length of the curve measured from the vertex.

13. A straight line is drawn on a plane which is then
wrapped on a cone. Shew that if p be the radius of absolute

curvature of the curve on the cone at a distance r from the
vertex

r' = + a^p,

where a is a constant.

14. Find the values of the radii of absolute and spheri-

cal curvature at any point of a helix.

15. Find the locus of the centres of spherical curvature
of a helix

A. G. 11
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16. If, at any point of a curve, equal lengths Ss be

measured along the curve and its circle of curvature, the dis-

tance between the extremities of these lengths is ultimately

equal to

Bl /^ l/c/py

6/>V a' '^ p' \ds I

'

p being the radius of curvature and cr the radius of torsion at

the point.

17. Shew that the normal plane at any point to the

locus of the centres of circular curvature of any curve bisects

the radius of spherical curvature at the corresponding point

of the original curve.

18. If a curve be drawn on a right circular cone cutting

all the generating lines at a constant angle /?, shew that the

radius of absolute curvature at any point is to the correspond-

ing radius of curvature when the cone is developed in the

ratio of sin a to ^sin^ a cos^ ^ + sin'' /S.

19. Shew that the curves represented by the equations

are circles of radius a.

a'



CHAPTER X.

ON ENVELOPES.

134. Let the equation of any surface be

F{x,y,z,a) = (1),

where a is a constant. If a be changed to a we obtain the

equation of another surface

F{x,y,z,a!) = (2),

differing from (1) in magnitude or position or both, but of the

same general nature.

These two equations will both be satisfied by the co-

ordinates of all points in the curve of intersection of the two
surfaces, and if we suppose the value of d to approach indefi-

nitely near to that of a, this curve of intersection approaches

some limiting position. The locus of all such limiting positions

for different values of a is a surface which is called the envelope

of the surface (1). Its equation can be found in the following

manner.

At all points for which (1) and (2) are satisfied, we have

F{x,yy z, a) = 0,

F{x, y, z, a) - F {x, y, ^> ^) ^ q
a — a

But ultimately when a' becomes equal to a these equa-

tions reduce to

F(x,y,0,a) = O (3),

^^F{x,y,z,a) = .(4),

11—2
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which are therefore the equations of the ultimate position of

the curve of intersection of (1) and (2). Ehminating a be-

tween (3) and (4) we obtain the equation of the locus of such

curves, or the envelope of the surface (1).

135. The curve given by the two equations (3) and (4)

of the last article is called the characteristic of the envelope.

If we take the equations of two consecutive characteristics

and treat them as in Art. 131 we get, to determine their point

of intersection, the three equations

F {oo, y, z, a) = 0,

F (x, 2/, z, a) = 0,

F' (x, y, z, a) = 0.

If between these three equations we eliminate a we shall

get two relations between x, y, z which are the equations of

the locus of ultimate intersections of two consecutive charac-

teristics. The curve so obtained is called the edge of regres-

sion of the envelope, or sometimes simply the edge of the

envelope.

Thus the line given by equations (4) and (5) of Art. (129)

is the characteristic of the envelope of the normal planes to

the curve, while the locus of the centres of spherical curvature

is the edge of regression of the same envelope.

136. We will now shew that the envelope obtained in

Article 134 touches each of the series of intersecting surfaces.

For suppose from equation (4) of that article we obtain a

value of a,

a = 4>{x,y, z).

Substituting in (3), the equation of the envelope becomes

F[x,y,z,<i>{x,y,z)} = (1).

dz dz
The values of -r- and , at any point of this surface are

given by the equations

dF dF d^ ^F/d<f> dcf) dz\

dx dz dx d4> \dx dz dxj

dF dF(h dF/dcf) d^d^\

dy dz dy d(f) \dy dz dyj

(2).
*

i
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At any point of the surface F {x, y, z, a) = the values of

-J-
and -^ are given by the equations

cLoc ^y

dF clFdz ^
^"^

doc dz dx

dF dF dz _
dy dz dy

But at the points where the envelope meets the surface

Fix, y, z, a) = 0,

we have

a = (l>(x, y, z) and j^
= 0-

7 77? tl TP

'Now Tj only differs from -j- in having (/> {x, y, z) instead of
d<p da

a, consequently at all the points of intersection of the surface

F(x,y, z,a) =

with the envelope, ^-r = 0, and the equations (2) become iden-
d(p

dz dz
tical with equations (3). The values of j- and ^ being the

same for the surface and its envelope, the two surfaces touch.

137. If the equation of a surface be

F(x,y,z,a,h) = \ (1),

-when a and h are constants, any two other surfaces formed by

giving new values to a and h will intersect (1) in a point or

points, which assume a limiting position when the new values

of a and h approach indefinitely near to their first values.

^The locus of such limiting positions is called the envelope

of the surface (1).

Let a and h become a-^h, h + k respectively. The equa-

tion of the corresponding surface is

F (x, y, z, a-\-h, b + k)=0,

or F{x, y, z, «, h) + hF' (a + Oh) + kF' (h + Ok) = 0. - .(2),
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where ^ is a proper fraction and F' (a + Oh) means that

F(a), y, z, a, h) has been differentiated with respect to a, and
a -f Oh put in the result for a.

At the points of intersection of (1) and (2) we have

F{x,y,z,a,h) = ] ,^.

JiF {a + Oh) +kr (h + Ok) =0
J

^
^'

and whatever be the ratio of h to k, when h and k are di-

minished indefinitely all the curves of intersection given by

(3) pass through the points given by

F{a),y,z,a,h) = 0, F'(a)=0, F' (b) = 0.

By eliminating a and b between these equations we obtain

the equation of the envelope.

138. The envelope in this case also touches each of the

series of intersecting surfaces. For let the equation of one

of the surfaces be

F(x,y,z,a,h) = (1).

The corresponding point on the envelope is given by (1) com-

bined with
dF ^ dF

From (2) we can obtain by solving for a and b

and the equation of the envelope becomes

F[x, y, z,
(t>^

(x, y, z), </>, {x, y, 3)] = 0.

The values of -p and -^ for any point of the envelope

are given by the equations

dF dFdz_ dF M, dcp.dzX dF/dJ) d^^d_z\^

dx dz dx d(f)^\dx dz dx) d(f>^\dx dz dx)

dF dFdz d]^/d4^
,
d(j)^ch\ dF /d(p^

dy dz dy d<f)^ \ dy
"^

dz dy) d^^ \ dy dz dy)
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But at the points where (1) meets the envelope

consequently at those points -yj- = 0, -,— = 0, and the above

equations become

dF dFdz_
dx dz dx

dF dFdz^Q
dy dz dy

dz dz
which are the same as the equations which give -y- and -^

for the point {x, y, z) of the surface (1). Hence at the points

where (1) meets the envelope the values of -7- and -7- are

the same for the surface and the envelope, which therefore

touch one another at those points.

139. If the equation of a family of surfaces contains n
arbitrary constants connected by (n — l) equations there is

really oJie independent constant, and the envelope can be
found by substituting for {n — l)oi the constants their values

in terms of the ?^^^ It is better in general to consider

(n — 1) of the constants to be functions of the n^^, and dif-

ferentiating all the equations to eliminate by undetermined
multipliers.

If the n constants be connected by (?i — 2) equations, two
of the constants are arbitrary, and the envelope falls under
the second class. The method of undetermined multipliers

can be used in this case also.

For examples of the solution of problems the reader is

referred to Todhunter's Differential Calculus, Chapter xxv.,

the methods employed there being equally applicable to the

problems of Solid Geometry.
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140. The polar plane of any point (a, /3, 7) with respect

to any quadric can be obtained as in Art. 106. If the point

(a, ^, 7) be constrained to lie on any given surface

f{x,y,z)^(i (1),

the equation of its polar plane will contain three parameters
a, y8, 7 connected by one relation

/(a,/3,7) = 0.

The equation of its envelope can therefore be found by
the methods of Art. 137.

Suppose this equation to be

.p{x,y,z) = Q (2).

Then any point {a\ ^'^ 7') in (2) is the limiting position of

the point of intersection of the polar plane of some point

i'X, y8, 7) on (1) with the polar planes of points on (1) adja-

cent to (a, JS, 7). Hence by Art. 106 the polar plane of

(a', /3', 7') with respect to the given quadric must pass

through the point (a, /3, 7) and other points on (1) contiguous

to (a, /3, 7), that is the polar plane of (a", yS', 7') is a tangent

plane to (1) at (a, /3, 7). Thus the surface (1) is the en-

velope of the polar planes of all points on (2) with respect

to the same quadric. The two surfaces are from this pro-

perty called reci2:)rocal polars.

Each surface may be also defined as the locus of the

poles of the tangent planes to the other with respect to the

given quadric.

141. Let the quadric with respect to which the polars

are taken be the sphere,

aJ2 + / + ^2 = ^.2 (J)

The equation of the polar plane of any point (a, yS, 7) with

respect to this sphere is

ax-^(3y + r^z = k'' (2).

Let the surface to be reciprocated be the ellipsoid

a^^ y"^ ^^ 1 /ox
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Hence we have to get the envelope of the plane (2), a, /5, 7
being parameters connected by the relation

a^ /3' rJ-

a^+F + ?=l W-

Using the method of undetermined multipliers we get to

determine the envelope,

whence 1 + \k^ = ;

_a^x o_^^y _ ^^^

and substituting in (2) the envelope becomes

aV + 6y + cV = ^* (5).

The surface represented by (5) is often called the reci-

procal ellipsoid of that represented by (1).

EXAMPLES. CHAPTER X.

1. Find the envelope of the series of planes

where a, ^, 7 are parameters connected by the relations

a,' + ^' + y' = l,

la + mjB + ny = 0.

2. Find the envelope of a sphere of constant radius

which moves with its centre on a fixed circle.

3. Find the envelope of central sections of an ellipsoid

of which one axis is constant and equal to k.
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4. Find the envelope of planes which are the polars of

points on the ellipsoid

x^ if z" ^—I- - ^— = 1

with respect to the ellipsoid

5. Find the envelope of a sphere of constant radius which
moves with its centre in a fixed plane.

6. Find the envelope of an ellipsoid whose axes are

given in direction and the product of whose axes is constant

and equal to 8^^

7. Find the envelope of the series of planes

Ix + my + nz = v^

where I, m, n, v are parameters connected by the relations

"1 2 72 "T" ~o ~o V/«

v^ — a^ v^ — If v^ — &

8. Find the envelope of a sphere whose centre is at a

point (a, /3, 0), and radius is 7 where a, yS, 7 are connected ;

by the relation _^

h being a constant.

9. Find the envelope of the surface

?'+ll + £^ = i *>
a /S 7

where a, yS, 7 are parameters connected by the relations

a, 6, c being constants.
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10. Find the envelope of all planes whicli cut off a
constant volume from the co-ordinate axes.

11. Find the envelope of a series of planes which move
so that the perpendicular on them from the origin is constant
in length.

12. Find the envelope of a series of planes which move
so that the area of the section of an ellipsoid made by any
one is in a constant ratio to the area of the parallel section

through the centre of the ellipsoid.

13. Find the envelope of a sphere of constant radius

which moves with its centre on a fixed sphere.

14. Find the envelope of the plane

ax
^
Py

I

7^_ _L^ J_ ZZ — 1
^2 "•" L2 "T ^2 *'

when a, P, y are connected by the relations

a' fi' y'
,

la + mff + ny= 1.

15. Through a given point (a, /3, 7) a series of chords

are drawn to an ellipsoid whose equation is

oc^ if z^ -—\-— A— = 1
^2 + ^2 + ^2

-L,

in such directions that the line of intersection of the tangent

planes at the extremities of each chord is perpendicular to

that chord. Prove that the envelope of the lines of inter-

section of the tangent planes is a parabola which is the

intersection of the polar plane of (a, (3, 7) with the cone whose

equation is

^{V - c') ax
,

7(o' - a') py ,
J{a' - 6') 7^ _ ^

a c



CHAPTER XI.

ON FUNCTIONAL AND DIFFERENTIAL EQUATIONS OF
FAMILIES OF SURFACES.

142. To find the general equation of conical surfaces.

A conical surface is generated by a straight line luhich

ahuays passes through a fixed point and meets a fixed curve.

Let {a, /3, 7) be the fixed point, and let the equations of

any generating line be

^=2/_^ =i^ (1).
I m n

Let the equations of the curve through which (1) always
passes be

y = <t>{x\ z = ylr(x) (2).

Since (1) always meets (2) we have

m
^ + j{x-a) = (j){x),

f

7 + -^ (a: — a) = -v/r {x).

And eliminating x between these equations, we shall get

n 1)1

a relation between -j and y, which can be put into the

form
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whence the equation of the cone becomes

'-^^f(V^)
(3).

This is the functional equation of conical surfaces. In
all cases it is clear that the equation is homogeneous in

x — a,y — ^,z — y; in fact the result we have obtained is

the analytical statement of the fact that the equation of

any conical surface whose vertex is at a point (a, ^, <y) is

homogeneous in x — a, y — ^, z — y ; an extension of the
result of Art. 34.

A differential equation holding for all such surfaces can
be deduced thus.

From (3) differentiating with respect to sc,

ax \x — a/ \x — aj \x— aj

and with respect to y,

dy \x — a)

'

dz _z — y y — ^ dz
' ' dx X —OL X — a dy'

143. To find the general equation of cylindrical surfaces.

A cylindrical surface is generated by a straight line luhich

moves always parallel to itself and meets a fixed curve.

Let I, m, n be the direction-cosines of any one of the

generating lines, and

X—x Y—y Z—z .^.—j—= ^ = =r (1)m n

the equations of the line. Let the equations of the directing

curve be
Y=4>(X), Z=^{X) (2).

Since (1) meets (2), we have

y + mr = (p{x + Ir), z -{ nr = yjr (x + Ir),
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and by eliminating r between these two equations we get a

relation between x, y, z, the co-ordinates of any point in any

one of the generating lines, which is therefore the equation

of the surface.

The general form of the result is obtained thus.

From (1) mX — ZF = mx — ly,

nT— mZ= ny — mz.

But from (2) mX — lY and nY—mZ can ordinarily both

be expressed as functions of X, and we can therefore deduce

a relation of the form

mX-lY=F{nY-mZ)',
.'. mx — ly = F {ny — mz) (3),

which is the general functional equation of cylindrical

surfaces.

The differential equation can be deduced. For from (3),

differentiating with respect to x,

dzm = — mF' {ny — mz) -^ ,

and differentiating with respect to y
dz\

dy
— I = ( n —m^ ] F' {ny — mz),

, J
dz dz

whence t ^- —n - m ^ ,ax dy

idzdz ...

dx + "'dy =
" (*>•

If the direction of the generating line of the cylindrical

surface be parallel to the axis of y we have 1 = 0, m=l,
n = 0, and equation (3) becomes

x = F{-z) or f{x,z) = (5).

Any equation of this form represents therefore a cylin-

drical surface whose base is the curve of which (5) is the

equation regarded as an equation restricted to the plane

of zx.
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Similarly the equations

f(?=, y) = 0,

fdi, ^) = 0,

represent cylindrical surfaces whose generating lines are

parallel to the axes of z and x.

These results are obvious also from general consider-

ations.

144. To find the general equation of conoidal surfaces.

A conoidal surface is a surface generated hy a straight

line luhich always meets a fixed straight line, is parallel to a
fixed plane, and meets a fixed curve.

Let the equations of the fixed line be

^ =l^ = '-^ = r (1),
l m n

^and let the equation of the fixed plane be

I'x +^ m'y -\-7iz = (2).

The co-ordinates of any point in (1) can be represented

by oL + lr, /8 + mr, y + nr, and the equations of any straight

line through this point are

X — a — lr _y — — mr _z — y — nr
m^

^^ ^^ ••••••••yO/a
A fJb V

If this be parallel to (2), we have

\l' + iJLni + vn =0 (4).

From (3) and (4)

V {x — a) + ni (y - I3) + n (z -y)= (W + mm' + nn) r. . .(5),

and from (3) eliminating r

n\ — ly_ n (x — a) — l(z — 7)

n/Jb—mv n(y — ^)— m(z — y)
^ ^'

Now the condition that the straight line (3) may meet the
|fixed curve, combined wdth (4), will ordinarily enable us to
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express - and - as functions of r, and consequently we can

arrive at a result of the form

— = F \(ll' 4- mm + nn') r],
TlfM—mv ^ ^

or

„(a; a)-;(^-7) ^j, ^^ ^ ^^^^
n(y — p) — m{z — y) ^

"^ #/j x /

which is the general functional equation of conoidal surfaces.

If the fixed plane be taken as the plane of ocy, and the

point where the fixed line meets it as the origin, we have

r =0, m' = 0, n=l, a = 0, /3 = 0, 7 = 0,

and the equation (7) becomes

71X-IZ ^^
7iy — mz

If the fixed line be perpendicular to the fixed plane

Z = 0, m=0, ?i = l,

and the equation of the surface becomes

In this case the surface is called a right conoid.

145. The differential equation of conoidal surfaces can be
deduced from (7) ; for differentiating it with respect to a?, we
have

' dz

\

dz
n - I

^J {n iy-13)- m (^ - ry)l + m^ [n (x-cl)-1(z- y)}

{n{y-l3)-m{z-y)}'' '

= {l'+n^^F'[l'{x-a)^m'{y-^) + n'{z-y)];

"^^
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and differentiating with respect to y, we have

dz ( dz\
^ dy ^''^^ " ^^ " ^^^^ ~ '^^' ^ V ~ ^^^

dy)
{^^(^"°') - ^ (^ - 7)}

[n (2/
- /3) - m (^ - 7)}'

= ^m' + n' -^) i?'' {^' (a; - a) +m (y - ^) + n' {z - 7)},

and reducing and eliminating

F {V {x-0L) + m! {y - ^) +n' {z -r^)]

we obtain

(dz\ dz

+ (^' + "' £) L"(^-") - H^ - 7)
+
|<l«(y--8)-™(c8-^)}] = 0,

or 111 [n (2/
— /3) — w (^ — 7)} + 1' [n (cc— a) — l(z — 7)}

dz
+

-J-
[m {m {x — OL) — l{y — p)] + n [n{x — a) — l{z — 7)}]

+ jK{n(2/-/3)-m(^-7)}+r{K2/-yS)-m(^-a)}] = 0...(10).

The differential equation corresponding to equation (8) is

obtained by putting

a = 0, /3 = 0, 7 = 0, r = 0, m=0, n =1,

Land is therefore

{nx-lz)^-\-[ny-mz)-^ = ^^^^'

The differential equation of a right conoid is obtained

from (11) by putting

1 = 0, m=0, n = l,

and is therefore

4^4=" ^''^-

A. a 12,
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The forms (11) and (12) can of course be obtained di-

rectly from (8) and (9) by differentiation.

For instance from (9), differentiating witli respect to x,

we have

dx y^ \y)'

and differentiating with respect to y,

dz _ X , fx\

whence eliminating i/r' ( -
J

, we have

dz dz _^
dx ^ dy '

'

146. The three classes of surfaces we have considered

are all included in the general class of rided surfaces, that is,

surfaces which can be generated by the motion of a straight

line. The first and second differ from the third in this, that

any two consecutive generating lines in any surface of the

first or second classes lie in one plane, whereas this is not

in general the case with the third class. Ruled surfaces

in which consecutive generating lines lie in one plane are

called developable surfaces, while all other ruled surfaces are

called skew surfaces. Thus the surface generated by the

ultimate intersections of the normal planes to a given curve

is developable.

Developable surfaces are so named for the following c

reason. Let a series of consecutive generating lines be

drawn. The plane which passes through the first and
second line intersects the plane which passes through the

second and third line in the second line. The first plane

may be turned round the second line till it coincides with the j:

second plane, and thus three generating lines of the surface

can be made to lie in one plane. Again, this plane can be

turned round the third line till it coincides with the plane
_|

which passes through the third and fourth lines, and so four

consecutive lines can be made to lie in one plane. In this
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manner the whole surface can be developed so as to lie in

one plane without tearing.

Since any two consecutive generating lines of a develop-

able surface lie in one plane, any such surface may be pro-

duced by the ultimate intersections of a series of planes, and
since any two consecutive planes intersect in a line on the

surface, the equation representing any one of the series can

only involve one arbitrary constant (Art. 134).

147. Let the equation of one of the planes be

Ax + By^-Cz-D:=0 (1).

Then since the equation only involves one arbitrary con-

stant, A, B, C, D must be functions of one constant which

we may call a. Thus equation (1) may be written

#i(«) + #.W + #3 ('>')- </>*« = (2),

and the envelope is found by eliminating a between (2)

and the equation obtained by differentiating it with respect

to a, viz.

x<l>; {a) + y4,:{0L) + z4>; (a)- <^;(a) = (3).

To obtain the general differential equation of developable

surfaces we must differentiate (2), considering a as a function

of X, y, z determined from (3).

Differentiating with respect to x, we get

dz

dx<i>M + -j-^^A^)

, , , . ,
{doL doL dz \— 6. (oL)\ W+ [.i.; (a) + #; (a)

+

z^: (.) - <!>: («)} 1^ +^ ^4 = 0,

dz
or by (3), ,^.(a) + ^<^3(a) = (4).

Similarly, differentiating with respect to y, we get

'^«W+J<^sW = (5)-

12—2
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EliminatiDg a between (4) and (5), we get

£=•^(1) ^6>'

and differentiating again with respect to x and y in turn,

we get

d^z _ J.,
(dz\ d^z

dx' "^ \dy) ' dxdy'

d^z _xf(dz\ d^z

dx dy "^ \dy) ' dy^

'

And eliminating /M-r-J , we get

d^ d'z / d'z V^
^

dx^ ' dy^ \dx dy)
'

which is the differential equation of developable surfaces.

148. To find the general equation of surfaces of re-

volution.

A surface of revolution is the surface produced by the

revolution of a plane curve round a fijxed straight line in its

plane called the axis of revolution.

Let the equations of the axis of revolution be

Xj-a^y_-^^zj-y .

I m n

And let y =f{oc) be the equation of the revolving curve

when the axis of revolution is taken as the axis of x, and
the point (a, /3, 7) as origin. Let P be any point on the

surface, PR perpendicular on the line (1), and Q the point

{1, 13, 7). Then from the definition of a surface of revo-

lution,

PR=f{RQ) (2).

But RQ = I (x - a) + m (y - ^) + n (z - 7),

since it is the perpendicular from Q on a plane through P
perpendicular to (1), and

PR' = {x-OLy + {y-fiy + (2 - 7/
- {l(x - a) -\- m {y - ^) -{- n{z - ry)Y.

i
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Hence

ov{x-ay^{y-Pr + {z-r^r

= cl>{l(w-a) + m{y-^) + n(z-y)} (3),

which is the functional equation of surfaces of revolution.

The differential equation can be thus deduced.

Differentiating (3) with respect to cc we get

2{(.-a) + (.-,)|}

" {^
"^
""S}^'

1^(^" ^) + ^(3/ -/3) + n(z - y)},

and differentiating with respect to y

= \m+nj-y
(f)'

[I (x-a.) + m (y - ^) + n (z - y)].

Eliminating <^' and reducing, we get

dz
m(x-OL)-l(y-^)+ {m (z - y) - n (y - p)] ^

dz
+ [n{x-a)-l{z-^)]'f^ = (4),

which is the differential equation required.

149. The conditions that the general equation of the

second degree should represent a surface of revolution, can

be obtained either from the functional or differential equa-

tion of the last Article. We will obtain them from the func-

tional equation.
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Let the equation be

Ax^ + By"" + 0/ + 2A'yz + 2B'zx + 2G'a;y

+ 2A"x + 2B"y + 2G"z + F=0 (1).

If this equation represents a surface of revolution it can

be put into the form

(x - af + (y-^y+(z - yf = P(lx + my-hnzy

+ Q(lx i- my + nz) + R (2),

where P, Q, R are constants. This is evident from the

considerations that the right-hand member must be some
function of

l(x-a) + m{y-^)-\-n(z-y\

or of Ix + my -i-nz — (Icl + mff -\- ny),

and that it cannot contain x, y, z to a higher degree than

the second. Making the equations (1) and (2) identical,

we obtain from the terms of the second degree

PP-l=kA (3), Pmn = kA' (6),

Pm'-l=kB (4), Pnl = kB' (7),

Pn'-l^kC (5), Plm^kC (8),

where k is some constant.

Multiplying (7) by (8) and dividing the product by (6),

we obtain

PP = k^=kA-[-l;A '

B'C , 1 G'A' ^ A'B' ^ ,_,

These are the conditions which must be satisfied by the

coefficients of the equation. . Jk

The relations which must subsist between a, /5, 7 are

obtained by equating the coefficients of the terms of the first

degree in (1) and -(2), We thus obtain

Ql + 2a = 2kA'\

Qm-\-2fi=2kB",

Qn + 27 = 2kC".
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Whence kA::p^^'^:K^^^:2:i^
(10).

But ^, = ^7j, = ^T^ , and k is given by (9).

~T~ ~W "C""

The three equations (10) being the relations which

a, P, <y must satisfy are the equations of the axis of re-

ivolution.

150. The preceding investigation fails if the quantities

-jr-A, -^-B, -^-Cvanish,

for then h is required to be infinite.

We know that the equation (1) in this case represents a

parabolic cylinder, or two parallel planes (Art. 91), conse-

quently the surface cannot be a surface of revolution.

The investigation also fails if A\ B\ or C vanish. Sup-
pose A' = 0. From equation (6), mn = ;

.*. m = or ?i = 0,

and therefore, B or C' must vanish also. Suppose n = 0,

land therefore B = 0, we get then

Plm = kC,

kC = -l,

and (1 + kA) (1 + kB) = PHW = k'G"
;

.-. {C-A){G-B)=C'\

which with B' = is the condition required. The other

exceptional cases can be treated in the same way.

151. The differential equations of the different classes

of surfaces can be put into a more symmetrical form by the

•substitutions

dF dF^
dz _ dx dz _ dy

d~x^~dF' dy~~dF'
dz dz ^
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and corresponding substitutions for the second differential

coefficients of z, the equation of the surface being assumed
to be

F {x, y, z) = 0.

Thus the differential equation of cylindrical surfaces

becomes

,dF dF dF ^
I ^—l-m -7- + ?i-y- = (1).
ax ay az

The equations can be more conveniently used in this I

form to discover whether a surface whose equation is given

belongs to the peculiar class considered.

For instance, if the surface be cylindrical, there must be
some values of I, m, n which shall make the expression

,dF dF dF ,„,^T-+??z ,-+72 ^T- (2)
ax ay az

vanish identically for all values of x, y, z corresponding to

any point on the surface.

The conditions that this may be possible will be that the
coefficients of the several powers and products of x,y, z in

(2) must vanish for the same values of I, m, n.

The differential equations can be found independently of

the functional. For instance, equation (1) is the algebraical

statement of the fact that at all points of the surface

F(x,y,z)^0,

a straight line whose direction-cosines are I, m, n is a tangent
line to the surface, a condition obviously satisfied by cylin-

drical surfaces only.

In the case of conical surfaces we at once obtain the dif-

ferential equation

. .dF , o^dF , ^dF ^
(^-«)^ + (2/-^)^^+(--7)^-=0,

from the consideration that the straight line joining any
point {x, y, z) with the vertex is a tangent line to the surface

at the point {x, y, z).
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EXAMPLES. CHAPTER XI.

1. Shew how to find the functional and differential

equations of a tubular surface, that is, a surface which is the

envelope of a sphere of constant radius which moves with its

centre on a fixed curve.

2. Prove that the surface

x^ \- y^ -\- z^ — Zxyz = c^

is a surface of revolution round the line x = y — z. Find the
equation of the generating curve.

3. Find the equation of a conoidal surface of which the
generating lines pass through the axis of z and are parallel to

the plane of xy, and whose directing curve is a circle with its

centre in the axis of x and its plane parallel to that of yz.

{The Cono-Guneus)

4. Find the equation of the surface generated by a
straight line which passes through two fixed straight lines

at right angles to each other, and also through a circle

whose plane is parallel to each of the straight lines and
whose centre is at the middle point of the shortest distance

between them.

5. Find the equation of the surface generated by a
: straight line which always passes through the axis of z and
; some point of the curve

x = a cos 6, y = a sin 6, z = c6;

and is parallel to the plane of xy.

6. Find the equation of the surface generated by the
tangent lines of the curve

x= a cos 6, y = ci sin 6, z = cd.

7. Find the equation of a conical surface whose vertex
is at any point on the surface of a sphere, and whose base is

a small circle of the sphere.
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Find also the curve in which the cone is cut by a plane
]

through the centre of the sphere perpendicular to the dia-
I

meter through the vertex.

1

I

8. Find the equation of the surface generated by the
revolution of a circle round a straight line in its own plane

which does not cut it.

9. Prove that all tangent planes to the surface in the

last question which pass through its centre cut it in two
circles.

10. A fixed straight line AB meets a fixed plane in A.
A straight line AP moves so that the sine of the angle which
it makes with AB bears a constant ratio to the sine of the

angle which it makes with the fixed plane. Find the surface

generated by AF.

11. Find the conditions that the surface

Ax^ + By^ + Cz' + 2A'yz + 2B'zx + 2C'a:i/

+ 2A"x + 2B''y + 2C"2 + F =
may be a cylindrical surface.

12. Shew that with the notation of Art. 100 the con-

dition that the surface F (x, y, z) — Q may be develop-

able is

W' {vw - ii") + F' {wu - v") + }Y^ (uv - tu")

•h2VW(v'w- im) + 2WU(w'u'- vv) + 2 UV(2cv'- iuw')=0.

Deduce the conditions that the surface in (11) may be

developable.

13. Find the equation of the surface generated by all

the normals drawn to an ellipsoid

at the points where it is cut by the cone

a b c ^.

--l--+-=0. ^X y z
I
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14. A surface is generated by a straight line which
;passes through the axis of z, and the line x = a, z=0; re-

maining parallel to the plane y = kz. Shew that its equa-
tion is 00 (y — kz) = ay.

15. Describe the general nature of the surfaces repre-

sented by the several equations

(1) f(r, 6) = 0. (2) f{r, 4.) = 0. (3) /{$, 4>) = 0.

16. Examine the nature of the surfaces represented by

(1) r' = a^cos2^. (2) r'=a'cos2<^.

17. Find the equation of a cylindrical surface having
one central circular section of an ellipsoid for its guiding
curve, and its axis perpendicular to the other circular

section.

18. With the axis of z as axis a series of helices are

described, all intersecting two given curves; prove that the

functional equation of the surfaces generated is

and that the differential equation is

2 d^z d^z 2 d^^ _ dz dz
^ dd ^ dxdy dy^~^ dx ^ dy'

19. A candle is placed at a given distance in front

of a plane vertical circular mirror on a line perpendicular
to the plane of the mirror through the extremity of its

horizontal diameter; shew that the boundary of the re-

flected light which falls on a wall of which the plane is per-

pendicular to that of the mirror is a parabola, and deter-

mine its latus rectum.

20. A straight line AB moves on two fixed straight

lines not in the same plane so that the portion between
the lines subtends a right angle at a fixed point 0. Prove
that the locus of this line is a skew surface of the second
order.
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21. Obtain the differential equation of surfaces of revo-

lution from the consideration that at every point of such

surfaces one tangent line is perpendicular to the plane con-

taining that point and the axis of revolution.

22. Shew that if a section of a right conoid whose
generating lines are parallel to the plane of xy be made
by any plane parallel to that of xy, the normals at points in

the lines of section will meet the plane of xy in concentric

hyperbolas.

23. Prove that the general functional equation of the

surfaces generated by a circle which always touches the axis

of z at the origin may be written in the form

a;'' + y^ + ^ = 2c^/(|),

and that the differential equation is J IE

foe:

24. Shew that the equation I

z" (2z-x- yf + 2z{a- z) {x - yj - 2a' {z-x){z-y) =

represents a conoidal surface. .

25. Describe the form of the surface whose equation is *

• -^z ^ _i ysm ~ = n tan -

.

c X

If n = 2, prove that through any point an infinite number
of planes can be drawn, each of which shall cut the surface

in a conic section.

f

H



CHAPTER XII.

ON FOCI AND CONFOCAL QUADRICS.

152. A FOCUS of a conic section is a point such that the
iistance of any point on the curve from it can be expressed
IS a linear function of the co-ordinates of that point.

There are certain points which have analogous properties

.n reference to quadrics, and which may therefore be called

bci of quadrics.

153. For instance the equation of the ellipsoid is

x^ if' z^ ,

a^ + P+? = l (1).

vhere we will suppose a, b, c in descending order of magni-
;ude. Also let e^, e^, e^ be the excentricities of the sections

if (1) by the planes of yz, zx, xy respectively.

The co-ordinates of the focus of the section by the plane
)f xy are ae^^ 0, 0. The square of the distance of any point
Xy y, z) in (1) from this focus

= {x- ae^Y +f + z^

z"= ^M 1 - -J - 2ae^x + a' - "^ " -^

aV '
c'

x2 hVz'= {e^x — a) —
c'

= (e^x — ez — a) (e^x + e'z — a), ii e = —^
c
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Hence the square of the distance of any point on (1)

from the focus of the section of (1) by the plane of xy is

equal to the product of two linear functions of the co-ordi-

nates of the point.

Or, geometrically, we may say that the square of the

distance of any point on the quadric from the focus of the

section of the quadric by the plane of xy, is proportional to

the product of the distances of the point from two planes

whose equations are

e^x — ez — a = (2),

ejJc-\-e'z — a = .. (3j.

J

These two planes intersect in a line whose equations are

£r = 0, e^x — a = 0, that is in the directrix of the section of

the quadric by the plane of xy.

Similar properties hold for the foci of the sections of the

quadric by the planes of yz and zx, but in these cases the

two planes corresponding to (2) and (3) are impossible,

though their line of intersection is real.

154. These points are not however the only points which
have the same property. We will examine the conditions

which must be satisfied by the co-ordinates of any point, in

order that the square of its distance from any point on a

given central quadric, may be proportional to the rectangle

contained by the distances of the latter point from two
planes, real or impossible.

If a, /8, 7 be the co-ordinates of such a point, we must
have the expression (x — of -f (?/ — PY + (^ — 7)*^ identically

equal to

{l(x-a')+m(y-/3')-\-n(z-y)] {l\x-a)-^m(y-^')+n(z-y% t

for all values of x, y, z which satisfy the equation of the

quadric ; a\ yS', 7' being the co-ordinates of any point in the

line of intersection of the planes.
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Let the equation of the quadric be

Ax'' + By''-\-Gz^=l (1).

Then the equation

must be satisfied by all values of x, y, z which satisfy (1).

This can only be the case when the two equations are
identical, and as first conditions for this the coefficients of
yz, zx and xy in (2) must vanish. We thus get

Tfin' + mn — 0, nV + nl = 0, hii! + Vm ~ 0,

which can only be satisfied by one of the sets of conditions

or

m = 0, m

n = 0, n

m
o> -=--

= 0,

m
r

n

n

«.'z

n

n

I
I

m
m

(3).

If we take the second set of these equations and put

I'

J =Jc, the equation (2) becomes

{x-ay-V{y-l3y+{z-r^f-U\x-oLy+hn\z-iY=0 (4).

Comparing the remaining terms of the second degree
with those in (1) we obtain

LtA^' _ 1 _ 1 + '^'^^

A ~B~

or hr = 1 -

G

^ 7 2^1
(5).
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And by comparing the terms involving x, y, z, and the

constant term in (4) with the corresponding terms in (1) we
have

a-Wa: = 0, ^ = 0, 7 + A.-7iV = (6),

a^ + /3^ + 7"-^'^'a^ +^W = -5 (7).

And substituting for a, 7' from (6) in (7) we obtain by help

of (5),

T:T+r^ = i («)•

A B G B

The equation (8) combined with ^ = gives a conic

section in the plane of zx, all the points on which may be

considered as foci of the quadric. This curve is called a focal

conic of (1).

155. The equations (6) give values of a and 7' cor-

responding to any particular focus (a, (3, 7). These values

determine the position of a straight line which we may call

the directrix corresponding to that particular focus.

The directrices corresponding to the different foci lying

on the conic (8) all lie on a cylinder whose equation will be

found by eliminating a and 7 between (6) and (8), to be

156. The other conditions in (3) will similarly give us

two other focal conies in the planes of xy and yz whose
equations are

r7T+TS = i (^)'

A G B G

B' 7'

Y^ +Ti =^ (^^^'

B~A G~A



ON FOCI AND CONFOCAL QUADKICS. 193

land corresponding to any focus there will be a directrix per-

pendicular to the plane in which the focal conic lies.

Of these conies, whatever be the signs and relative mag-
nitudes of A, B, G, one will be an ellipse, another an hyper-

bola, and the third an impossible locus.

157. For instance, in the ellipsoid whose equation is

of if ^ -

the equations of the focal conies will be

o^ if

^^3^2 + ^23^ = 1 ill the plane of xy,

^' ^ -1
"T" ^2 r:i~ ^ ^^y

if- z^

W'ir^^'^~&^^^^^ ^^'

And if we assume a, 6, c to be in descending order of mag-
nitude, the first of these is an ellipse the extremities of

Whose axes are the foci of the sections of the orio^inal

ellipsoid by the planes of yz and zx\ the second a hy-
uperbola with its real axis in the axis of x, the extremities

of this real axis being the foci of the section of the ellipsoid

by the plane of xy : while the third is altogether an im-
possible locus.

Similar results may be obtained for the two hyper-
iboloids.

158. The focal conies of a cone

Ax^ + BfA-Cz'^O (1)

can be deduced from those of a central quadric

Ax' + By' + Cz'=.\ (2),

by putting \ equal to zero.

A. G. 13
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ABC
The focal conies of (2) would be, writing t- , -r- , — in- i

A. A. A
Stead of A, B, C in the formulae (8), (9), (10) of Articles 154
and 156,

a'
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we must as in Art. 154 make the equation (1) identical with

7(a;-a')+^?i(3/-/3')+^K^-7)H^X^-«')+^'(2/-^0+?^'(^-7)} = 0(2).

The first conditions for this identity are the same as

equations (3) of Art. 154, and if we take the second of those
V

conditions and put y = A?, equation (2) becomes as in that

Article

{x - of + {ij- ^y + {z- yf - kr {x - aj +W {z - jj = 0.

And since (1) contains no term involving x^ and no con-

stant term, we get

l-kl' = 0, a'^ + ^' + j'- kPa!' + knY =
;

and by comparing the remaining terms in the two equations,

we have

1 + kn' ^ 1 ^ 2 (a - kPa)

G ~B~ 1

y3=0, 2(7 + Z;wV) = 0;

and thus we get for the locus of the foci the two equations

or *

Grf _ 1/ _ 1\\

C-B BV ^Bji.

and /8 = 0l

By taking the third of the conditions (3) of Art. 154 we
shall similarly get another focal conic in the plane of xy
whose equations are

7 = 0,

B-G C\ 4(77
•

The first of the conditions (3) of Art. 154 is in this case

inadmissible inasmuch as (1) contains no term involving x^.

13—2



196 ON FOCI AND CONFOCAL QUADRICS.

Thus in this case the focal conies are two parabolas whose
vertices are the foci of the sections of the surface (1) by the

planes of xy and zx.

160. Two central quadrics

Ax"" + By"" + Cz'' = 1,

A'x' + B'f + OV = 1,

will have the same focal conies if

1111
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quadrics confocal to (1) which pass through the point (a, /3, 7),

of which one can be shewn to be an elHpsoid, and the others

to be hyperboloids of one and two sheets respectively.

162. Any two confocal quadrics intersect at right angles

at all points where they meet.

For let X, y, z be the co-ordinates of any point common
to the two quadrics

01? iP' z^

Z-^l + a = i (^)'

^' 4._l!_4-^!_-i m
A+k'^B + k'^C + k''-

^"^*

The equation of the tangent plane to (1) at the point

{x, y, z)is

A'^ B ^ G ^
^'

And the equation of the tangent plane to (2) at the same
point is

x'x yy zz _ , . ^

'A^'^B^k'^'CVk' ^
^*

But from (1) and (2) by subtraction we obtain at all their

points of intersection

Ai^A^k)^ B{B-vk)^ 0{C-Vk) '

which is the condition that (3) and (4) should be at right

angles to each other.
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EXAMPLES. CHAPTER XII.

1. Find the equations of the focal conies of the quadric

2^' + 32/' + 4^' = 9.

2. Find the equations of the quadrics confocal with the

quadric

2^' + 31/' + 4^' = 9,

which pass through the point (1, 1, 1).

3. Find the locus of the points of contact of tangent
planes drawn from a point in the axis of a; to a series of con-

focal surfaces whose axes coincide with the axes of co-ordi-

nates.

4. Shew that the surfaces

- -4 ^C 1- = 11^
2 "^ 7 2 >

a ax — a ax — b

x^ V ^
+ I + 7T——2

7-2 = 1,

intersect everywhere at right angles.

5. Shew that if the foci of the principal sections of two
paraboloids coincide, their focal conies will also coincide.

6. Extend the proposition of Art. 162 to the case of two
confocal paraboloids.

7. If from any point a tangent cone be di^awn to an
ellipsoid shew that the axes of the cone are the three

normals that can be drawn at the vertex to the three

confocals through the vertex.

8. Prove that if a, a , a\ a" be the transverse axes of

an ellipsoid, and of the ellipsoid and hjrperboloids of one and
two sheets which can be drawn through any point confocal

to the first ellipsoid ; and if a'^ -}- a""^ -F a "' = 3a', then three

tangent planes can be drawn from the given point to the

given ellipsoid mutually at right angles.



CHAPTER XIII.

ON CURVATURE OF SURFACES.

163. Two surfaces are said to have contact of the first

order at any point where they meet when they have a com-
mon tangent plane at that point. The necessary and suffi-

cient conditions for this are that for the same values of x and

y the values of z, -j- and -r- shall be the same for the two
'^ ax ay
surfaces.

Two surfaces are said to have contact of the in}^ order at a
point where they meet when the sections of the two surfaces

by every plane passing through that point have contact of the
ii}^ order. This we will prove to be the case if the sections of

the surfaces by all planes w^hich contain any given straight

line through the point of contact not lying in the tangent
plane have contact of the n^^ order.

For let the common point be taken as origin and the
given line as axis of z. Let the equations of the two surfaces

be

^=f{^,y) (1),

z = F(x,y) (2).

Expanding (1) and (2) we obtain

"• = (f)'^+©2'+- + f»(^i + 2'|)"/+ (3),

Kax.2

'\
, fdF\ I f d d\" „

)^^[^-^)y+...+ [,- + y^^yF+ (4),
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where z^ and z^ are the ordinates of the two surfaces corre-

sponding to the same values of x and y, and in the quantities
df (JW
4-

, -J- , ...w and y are put equal to zero after the differen-

tiations are performed.

Now since all sections of (1) and (2) by planes which con-

tain the axis of z have contact of the n^^ order, the difference

of z^ and z^ must be of the {n -\- ly^ degree in oc and y. Hence
we have

^^dF d£^dF dy^^d^ d^^d^ -^

dx dx' dy dy ' dx^ dx^ ' dxdy dxdy' '"
\

> •••(5).
dJ]f^_dJ^ dj _ d^'F

dx""
~

dx""'
'"

dx^'dy''-''
~

dx^'dy'"'
r >

J

If now the axes be changed in position, the origin remain-
ing the same, since the new co-ordinates x, y\ z of any point

are linear functions of the old co-ordinates, it is clear that any
d^'^'z

differential coefficient of the form , . .. . can be expressed in
dx dy

terms of the differential coefficients of z with respect to x and

y of orders up to but not exceeding the (r -I- sY". Hence if the

differential coefficients of z with respect to x and y for one

surface, up to those of the w*^ order inclusive, be respectively

equal to the corresponding quantities for a second surface, the

same will be true of the differential coefficients of z with
respect to x and y \ that is, if conditions (5) be satisfied for

two surfaces with any one set of axes, they will be also satis-

fied with any other set of axes. ^^"\

Thus if the sections of the two surfaces (1} and (2) by all

planes through the axis of z have contact of the tS'^ order, so

will their sections by all planes through the common point.

The conditions that two surfaces should have contact of

the 71^^ order at a given point are therefore that the values of

dz^ dz dr£ d^z d^'z

^' Tx' d^' '" d^' d^T^dy' '"
dy^''

should be the same for the two surfaces for the given values
of X and y.
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164. If two surfaces touch at a given point and the

sections hy a plane through the normal and any tangent line

have contact of the second order, then all sections hy planes

through the same tangent line have contact of the second order.

Take the common point as origin and the common normal
as axis of z. Then, z =/(iC, y), z = F {x^ y) being the equa-

tions of the two surfaces, the values of -^ , ~- , -7-
, -r-

aoc ay ax ay
vanish at the origin and the equations of the surfaces can be
put in the form

z = ax^ + hxy + cy'^+ (1),

z = Ax'+Bccy-\-Gy'+ (2),

cZy d^f d^f
where a, h, c are the values of J —^ , , ^ , J -~^ at the

d^'F d^F d^F
ongm, and A, B, C those of §^ , d^' i^ •

Also if the given tangent line be the axis of x, the sec-

tions by the plane of zx have contact of the second order, and
we have a = A.

Consider now the sections by a plane through the axis

of X whose equation is

y=-rnz (3),

we have for a given value x^ of x, in the one surface

z^ = ax^ + hx^y^ + cy^ + . .
.

,

and in the other

••• ^1 -^2 = ^1 (%i - %2) + ^Vi -Gy^ + "'

But z^ , z^ being of the second degree in x^
, y^ and y^ are so

also by (3), and therefore x^ {hy^ — By^ is of the third degree,
and therefore z^ — z^ is of the third degree in x^, and the
sections of the two surfaces by (3) have contact of the second
order.

Similarly if two surfaces have complete contact of the
{n — Xf^ order at a given point, and the sections by any plane
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through the normal and a given tangent line have contact of

the n^^ order, then all sections by planes through this tangent

line have contact of the if" order.

165. From the proposition proved in the last Article it

follows that if R be the radius of curvature of any normal
section of a surface, R cos 6 is the radius of curvature of an
oblique section through the same tangent line inclined at an
angle 6 to the normal section. For if a sphere whose radius

is R be described touching the surface at the given point,

the normal sections of this sphere and the surface through

the given tangent line have contact of the second order and
therefore also any oblique sections.

But the radius of curvature of the oblique section of the

sphere is obviously R cos 6 ; hence the radius of curvature of

the oblique section of the given surface is also R cos 6. ' This

proposition is called Meunier's Theorem.

166. If the tangent plane at any point be taken as the

plane of ccy and the point of contact as the origin, we have

seen that the equation of the surface can be put into the

form

z = ax^ + hxy -{-cy^-^- (1),

where the remaining terms are of a higher degree than the

second.

Consider the section of this surface by a plane through
the axis of z whose equation is

y = X tan 6 (2).

The radius of curvature of this section is the limit of

x^ + V^'

—

^r-— when the values of x and y are diminished indefi-

nitcly. Hence if p be this radius, we have

1 _ , ax^ + hxy + c?/ + Ax^
¥p~ ' ZTl^^

_ . a + h tan 6 + c i^w^O + Ax

= a cos^^ + h sin ^ cos ^ -h c sin^^ (3).
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If we construct the conic section whose equation is

ax^ + hxy + cy^=l (4),

it is evident from (3) that the square of any radius vector of

this conic represents the diameter of curvature of the section

of (1) by a normal plane passing through this radius vector.

This conic section is called the indicatrix of the surface at

the given point.

If in (1) we suppose x and y so small that the terms on
the right hand after the third may be neglected, we get

z = ax^ + hxy + cy'^ (5).

The curve in which this surface is cut by a plane z = k
parallel to the plane of xy is similar and similarly situated

to (4). Hence the indicatrix at any point of a surface may be
defined as a curve similar and similarly situated to the limit

of the curve in which the surface is cut by a plane indefi-

nitely near to the tangent plane at the given point.

167. By choosing the axes of x and y so as to coincide

with the principal axes of the indicatrix the equation (4) of

the last Article assumes the form

Ax^-^Cf=l (1).

Also the radii vectores drawn in the directions of the

principal axes are respectively the least and greatest radii

of the curve. Hence the normal sections for which the

radius of curvature is least and greatest respectively, pass

through the principal axes of the indicatrix. The radii of

curvature of these sections are called the principal radii of

curvature at the given point, and the sections themselves,

the principal sections.

Let R and R' be the principal radii of curvature, p and p
the radii of curvature of any other sections at right angles,

which we may take to be the sections through the axes of x
and y in equation (4) of the last Article. Then

^ -A2B~ '
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But A + C = a -^ c. (Todhunter's Conic Sections, Art.

274.)

And therefore

i+i=^7 ^'^-

Also if the section whose radius of curvature is p be in-

clined at an angle 6 to the principal section whose radius

is M, we have from (1)

^=^cos'6'+asin'^;
Zp

.*. - = ^ cos^ ^ + TV sin^ ^ (3).
p K K

We can thus obtain the radius of curvature of any normal
section if we know those of the principal sections, and by
Art. 165 we can deduce that of any oblique section. Hence,

if we know the principal radii of curvature at any point of a

surface, the curvatures of all sections of the surface at that

point are known.

168. To find the radius of curvature of any normal
section of a surface at a given point.

Let the equation of the surface be

F{x,y,z) = (1),

and let x, y, z be the co-ordinates of the given point P. Let

?, m, n be the direction-cosines of the tangent line at {x, y, z)

through which the cutting plane passes. Also let x + a,

y + ^, z + <y he the co-ordinates of a point Q in the curve of

section near to P. Let QR be drawn perpendicular on the

tangent plane. Then (Frost's Newton, Art. 78) the radius of

curvature of the section is the limit of ^^^ when Q is made

to approach indefinitely near to P.

But the equation of the tangent plane is

. , . dF , , . dF . , . dF ., ._,.(^—)^ + (y-2/)rf^+(^--)^
= (2).
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Hence

dF dF dF

with the notation explained in Art. 100.

And PQ'=.a' + 0' + y\

The radius of curvature is therefore the limit of

But since the point (cc -{ a, y+ jS, 2+y) is on the surface (IX

F(x + a,y + ^,z + y) = 0,

or expanding, and remembering that F(a), y, z) = 0,

aU+pV+yW^\{a\i^fih-Vy^w+2l3yu'-^2yav'+2a^w')+...=0.

Whence the above expression becomes

*
d'u + P^v + 7% + ^Pyu 4- 27a?;' + 2oi(3w + . .

.

where the remaining terms in the denominator are of higher-

dimensions than the second in :i, /3, 7.

Now, by Newton, Lemma YI. the angle between PR and
PQ diminishes indefinitely as Q approaches P. Hence we
have ultimately

I 111 n'

And making these substitutions and diminishing a, /3, 7 in-

definitely, we obtain for the radius of curvature

^ TjU'-\-V'+W'
"

ul^ + vni^ + wn' + 2itmn + 2v'nl + 2w'lm
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169. The principal sections are those for which p is a

maximum or minimum. Hence we have to make the ex-

pression

ul"^ + vm^ 4- lun^ + 2umn + ^v'nl + liu'lm (1)

a maximum or minimum by the variation of I, m, n, which are

connected by the relations

l' + m' + 7i' = l (2),

m+ Vm+ Wn = (3),

the latter expressing the fact that the line whose direction-

cosines are I, m, n lies in the tangent plane at the point

(oo, y, z). We shall denote the expression (1) by the symbol h.

Differentiating (1), (2) and (3) and using undetermined
multipliers, we obtain

ul-\-ivm-\-vn + kl + k'U=0 (4),

lul + vm + u'n + hm + /:' F = (5),

vl + itm + wn -{ kn -\- ¥W = .(6).

Multiplying (4) by I, (5) by m, and (6) by n, and adding,

we get
h-\-k = (7).

And the three equations (4), (5), and (6), become

(u — h)l + %vm + v'n = — M U,

wl-\-{v —h)m+u'n = — k'V,

v'l -\- u'm + {lu — h)n = — k' W,
whence

'
""' "

.(8).
u,
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From (9) we obtain two values of h and therefore of

p, and from (8) we deduce the corresponding values of

/, m, 11.

170. The formulae of the last two Articles are somewhat
simplified if we take the unsymmetrical form of the equation
of a surface

or f{x,y)-z = 0.

The reductions may be effected by the substitutions

?7 = p, F=g, W=-\,
u = r, v = t, w = 0,

u =0, V = 0, w' = s.

Moreover, instead of determining the tangent line through
which the section is made by its direction-cosines, it is usual
to determine it by its projection on the plane of xy, whose
equation we may assume to be

y —y — m{x' — x) (1).

The direction-cosines of the line of intersection of this

plane with the tangent-plane at (ic, y, z)y whose equa-
tion is

p{x -x) + q (y' -y)- {z -z) = 0,

are proportional to 1, m,p + qm, respectively.

The value of p becomes with these substitutions equal to

J 1 + p^ -\-
q^ {1 + p^ -\- 22jqm -f- (1 -f q^) m^]

r -\- 2sm -f tm^

171. The result of the last Article can be obtained inde-

pendently. Let a sphere be described having contact of the

first order with the given surface at (x, y, z), and let the
sections of the surface and the sphere by the plane (1) have
contact of the second order. Then the sections of the sur-

face and the sphere by a normal plane through the line

in which (1) cuts the tangent plane will, by Meunier's

Theorem, have contact of the second order with each other,
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and the radius of the sphere is therefore the radius of

curvature of the section required.

Let the equation of the sphere be

{X-af-{-{Y-hf + {Z-cf = p'

-
,
fdZV .^ .d'Z ^

.(2);

(3),

(4).

But at the point {x, y, z)

dZ
X=a7, Y=y, Z = z, ^= P

dZ_

dY = <1>

since the sphere and surface have a common tangent plane.

Also since their sections by the plane (1) have contact of the

second order, the values of z in terms of x —x, y —y for the

sphere and surface must coincide as far as terms of the second

degree in x' ^ x, y —y for points lying in the plane (1),

whence we obtain

d'Z ^ d'Z ,d'Z

dX^^^'^dXdY^''' jY-^
= r+^-ms + tm.

We deduce from (3)

X — a _y — h _z — c _ p

.(5).

-1 71 + p' + q^'P 9

and from (4)

d^ = 1+/ d'Z ^ ^q_ drZ _ 1+q'

dX' c-z' dXdY c-z' dY'~ c-z
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Whence from (5)

^ 1 +/ + 2pqm + (1 + q^) m^

r + 2s7n + tm^
'

and

The equation which gives the sections of greatest and
least curvature at any point is obtained by making this

expression for p a maximum or minimum by the variation
of m. Whence

{pq + (1 +q^)m} {r + 2sm + t7n^}

-(s + till) [I +/ + 2pqm + (1 + q^) m'] = 0,

or m' {s (1 + q') - pqt] + m {r (1 +q')-t(l+ /)}

+ {pqr-s(l+f)] = (7).

172. It may happen that at certain points of a surface
the two principal radii of curvature become equal. It follows
from Art. 167 that the radii of curvature of all normal sec-

tions at that point are equal, the indicatrix in this case beino-

a circle. Such a point is called an umbilicus.

The conditions for the existence of an umbilicus can be
deduced from the consideration that at such a point the
expression

tW^ + vm^ + tuif + 2u'mn + 2vnl + 2wlni (1),

nust retain the same value for all values of I, m, n consistent
ivith the conditions

Ul+Yiii-\-Wn = (2),

r -\- m^ + 7z' =1 (3).

From (2) TPr + V^m'' + 2 UVlm = FV

;

2lm = UV

Dimiiarly, 2ni = ^r^y
,

^''''' = vW •

A. G. 14
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Whence, substitating in (1), the expression

TFy_ W_ W"
Vv V u

must have the same value for all values of I, m, n consistent

with (3).

This gives the conditions

u+ ^{Uu -Vv' - Wio}=v + ^{Vv' - Wtu - Uic}

= w-\-^{WW- Uu'-Vv'} (4).

If the equation of the surface be of the form

u' = 0, V = 0, w' = 0, and equations (4) become

u = v = w (5).

If U, V or W vanish the investigation fails. Suppose

V
Then Vm 4- Wn = 0, or n = - jr^m,

and the expression (1) becomes

id + vm -\- w . "tt^^ . m — ^ m + zlm ( lu — -j^ J

,

which must remain constant for all values of m and n con-

sistent with the relation

P^,n^ ^1 + ^^ = 1.

Hence Ww' - Vv = 0,

V'w_2u'V
'" + W W ' Vhu +W'v-2 VWit

and u = pr, =
jn~fW^ ^^^•
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Similarly if F= or TT^ the requisite conditions may
be deduced. In these cases, three conditions have to be
satisfied by x, y, z besides the equation of the surface, which
will not generally be consistent.

The conditions for an umbilicus when the unsymmetrical
form of the equation of a surface is used may be deduced
from the consideration that the value of p in Art. 171 must
be independent of m. We thus get

r s t '

173. The conditions for an umbilicus can be obtained
in a slightly different form.

If h is the value of the expression (1) for all values of

I, m, n consistent with (2), it is evident that the ex-
pression

ul^ + vm^ + lun^ + 2u'm7i + 2v'nl + 2w'lm

-h{P-\-m' + n') (1)

must vanish for all values of I, m, n consistent with (2).

Hence Ul + Vm + Wn must be a factor of (6). The other
factor must be

u — h^ V — h w — h

and multiplying these factors together and equating co-

eflScients of mn, nl and Im as in Art. 49, we have

W V

and two similar equations, whence

W'v + V'w - 2iL VW
h =

y\, + jjs - 2io'UV

U'w+Whi-2vWU
by symmetry.W 4- U''

U—

2
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174. Lines of Curvatm^e.

A line of curvature on any surface is a curve such that

the tangent line to it at any point coincides luith the tangent

line to one of the principal sections at that point.

The differential equation of such lines is obtained b}'

substituting -7-, -^, y for Z, m, n respectively, in the

equations which determine the directions of the principal

sections in Art. 169. From the equations (4), (5) and (6) of

that Article we have, eliminating k and k',

ul + w'ni + v'n, I, U
wl + vni + u^'n, m, V =0 (1),

v'l + u'ln + wn, n, W
ox dii dz

and replacing /, 771, ?z by ^ , -^ , ^, respectively, we get

the differential equation of the lines of curvature.

The differential equation of the projection of the lines of

dv
curvature on the plane of xy is obtained by writing -^ for m

in the equation (7) of Art. 171.

175. A line of curvature is sometimes defined as a curve

such that the normals to the surface drawn at any two con-

secutive points of the curve intersect each other. This defi-

nition leads at once to the equation (1) of the last Article.

For the equations of the normal at a point {x, y, z) are

{^' -0^ y -y _z' -z /ON

-^(T^ 'v~-yr ^^^'

The equations of the normal at a point (a? -f a, 3/ + yS, 2" + 7)

are

X — X — a y —y -

^

IJ -V itoL -f w'l3 + v'y + ... V + w'l -^vfi -\- u'y + ...

2' — z — y
W + v'a + u'^ + wy -{- ...

•(3),
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where the remaining terms in the denominators contain
higher powers of a, /3, 7.

The condition that (2) and (3) should intersect is by
Art. 31,

U-\- u'x+iuP-\-vy + ..., U, a

V+wa+ vl3 +u'^+..., F, /5 =0,

ua. + w'^ + vy, U, a I

whence wa+v^+uy, V, ^ = (4),

v'a + 10^ + wj, Wj y

but ultimately a, /3, y are proportional to ';r , -j- , -r

,

CLs as cts

respectively, and the equation (4) reduces to the same
as (1).

176. The radii of curvature at any point of a quadric

can be obtained from the preceding formulae. Some of the

results are so simple and important that they deserve a

separate consideration.

Since all parallel sections of a quadric are similar, it

follows that the indicatrix at any point of such a surface is

similar and similarly situated to the section of the quadric

by a plane through the origin parallel to the tangent plane

at the given point. Hence the tangents to the lines of cur-

vature at any point are parallel to the axes of the section

by this plane, and the umbilici are the points at which
tangent planes can be drawn parallel to the planes which
give circular sections.

The equation of the tangent plane at any point (a, /3, 7)
to an ellipsoid whose equation is222—I- — -I— =1

xcL yp zy_
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If this plane be parallel to either plane of circular section

we have

a ^ 7
a Ja^-W ±cJYZr^'

, by Art. Qb,

and since (a, y8, 7) is a point on the ellipsoid, each of these

ratios = + , .

Hence the ellipsoid has four umbilici whose co-ordinates

are given by

a= + ay^^—^2. P = 0, 7 = ±c

177. If a tang^ent line be drawn to a surface of the second

degree at the extremity of the axis of any plane section of

that surface and lying in the cutting plane, the axis of the

section and this tangent line are at right angles. This tan-

gent line to the quadric is therefore also a tangent line to a

sphere described with the origin as centre, and the length of

the semi-axis of the section as radius.

Let the equation of an ellipsoid be

x^ v^ z^

a^ + i? + c^='' «
and let a sphere be described with the origin as centre and
any radius k. The equation of this sphere is

x^-\-7/-{-z^ = k^ (2).

The equation of the cone formed by straight lines joining

the origin with all the points of intersection of (1) and (2) is

therefore

For this equation does represent a cone whose vertex is

the origin and being satisfied by all values of x, y, z which
satisfy both (1) and (2) represents some surface passing

through their intersection.

Now every plane which passes through the origin and any
tangent line to the curve of intersection of (1) and (2) is evi-
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dently a tangent plane to the cone (3). Hence if we draw a
tangent plane to (3) along any generating line OP^, OP^ is one
axis of the section of (1) made by this plane. Let OR be
the other axis and Q be the point of (1) at which a tangent
plane can be drawn to (1) parallel to this section, then OQ
is conjugate to the cutting plane and OP^^ is conjugate to the
plane through OQ and OR.

The tangent to one line of curvature at Q is parallel to

OR, and consequently lies in the plane QOR which is diame-
tral to OP^.

Let OP, OP^y OP^ be three consecutive generating lines

of the cone (3) ; OQ, OQ^ the lines conjugate to the planes
POP^, PfiP^ which are ultimately consecutive tangent planes
to the cone (3). Then since OP^ lies in a plane which is dia-

metral to OQ, and also in a plane diametral to OQ^, the
plane QOQ^ is diametral to OP^ and therefore coincides with
QOR, and the line joining QQ^ is ultimately parallel to OR
and therefore is the tangent line to one line of curvature
which passes through Q. Hence one line of curvature through
the point Q is the locus of the points at which tangent planes
can be drawn to (1) parallel to the tangent planes to (3).

Hence if Q be any point on an ellipsoid, and r, k the
semi-axes of the central section which is parallel to the tan-

gent plane at Q, the axis k is constant for all points on the
line of curvature whose tangent at Q is parallel to r. But if

p be the perpendicular on the tangent plane at Q,

prk = abc Art. 75, equation (3),

and therefore pr = -j- = constant.

178. The equation of any tangent plane to (3) is

Ix +my' -\-nz — (4),

where I, m, n are connected by the relation

m^m^^n^ ^'^'

ci^ k^ W k"" c" k'

(See Chapter viii. Ex. 24.)
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and the equation of a tangent plane to (1) at the point

XX y y z'z _-i

a c

Hence if (6) be parallel to (4)

X _ y _ z

(U).

2„, »

or from (5)

aH h^m c^n

^" f ^ r.
-4 +-^ + 74=0,

k^ k^ ¥
and subtracting this from the equation

2 2 2X y z
1- - A =1

ce ^ ¥ ^ c' '

we get
•2

X y z
•> ^^ 7 V 7 '2 1^

d'-k' ' h'-k' ' d'-U'
= 1,

which shews that the lines of curvature on an ellipsoid are its

curves of intersection with confocal surfaces.

179. In the ellipsoid

W = 2z
,2 }

U = -
2 >

v =
2w= -^^ u =0, v =0, id = 0.

a- V ' c

Hence the differential equation of the lines of curvature is

\ dx X dx

d^ ds
'

a'

'

ds

1 dy y dy

b'ds' 1?' ds

1 dz z dz

c'ds' c" ds

= 0,

ds ds dsds
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180. Taking the equation

X
+ f +

^
oj" + k h' + k c' + k

= 1 .(1),

we have at the points where it meets the ellipsoid

2 2 2X y z ^—I- - + - = 121^7 2'^ 2 — -^

a c

by subtraction

X
+ f + -ir = 0.

d" {a' + k) ¥ (¥ + k) ^ & {& + k)

Also by differentiating (1) and (3) we obtain

X
dx

ds y
+

dy

ds
+

dz

ds

ct" + k b- -\-k c^ + k
= 0.

X
dx

ds y
+ r

dy

ds
+

dz

ds

a' (a' + k) '

h' {W + k) & {& + k)
= 0.

(2),

(3).

.(4),

(5).

1
And from (3), (4) and (5) eliminating -^^-^ , ^-^, ^,^^,

we obtain

X

a

dx

2 »

yl

dy dz = 0. .(6),
^ds' ^ ds' ^ ds

X dx y dy z dz

d^ ds ' P ds ' c^ds
|

which is the same as equation (1) of the last Article.

Thus we obtain an independent proof of the fact that the
lines of curvature on an ellipsoid coincide with its curves of

1 intersection with a series of confocal quadrics.
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181. If we denote by I, m, n the direction-cosines of the

tangent to either line of curvature at the point (oc, y, z) on the

ellipsoid they must satisfy the equations

^ + \Z + /x4 = (1),

| + \m + /t^, = (2),

^, + \7i + /.^, = (3),

which are obtained from the equations (3), (4) and (5) of the

last Article by the use of undetermined multipliers X and fi.

But if r be the central radius vector of the ellipsoid paral-

lel to the tangent line considered, and p the perpendicular

from the centre on the tangent plane to the ellipsoid at the

point {x, y, z), we have

\ _x^ f z^
~~h — ~j ~r fx -\ 4 («^j'
p^ or }y c ^

'

Also from the equation of the ellipsoid, by differentiation

_ Ix my nz ,^.

Differentiating (6), we have by means of (4)

dl dm dn

1 ds "^ ds ds ^

? +— +—+—=« <7>-

Multiplying (1) by 4 , (2) by
f-^

and (3) by ^ and adding

we have

1 fix my nz\

p \a c '
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or using the result obtained by differentiating (5),

p^ p^ ds

Again, multiplying (1) by
^^ , (2) by ^-£

, (3) by ^-£ and

adding, we have by (7) and (4) since also P-{- 'Jif + 7i^ = 1,

1
A*- ^^ _ A

r^ r^ ds~

Thus we obtain

1 dp _ 1 dr

p ds r ds
'

dp
,

dr

'~ds+Pd's = ^'

.'. pr = constant.

182. A few propositions must be added concerning a

class of lines of great importance, namely geodesic lines.

These may be defined as follows

:

A geodesic line on a surface is such that every small ele-

ment PQ is the shortest line that can he drawn on the surface

hetiueen P and Q.

The general equation of geodesic lines on a surface

F (x, y, z) = 0,

can be obtained by the help of Meunier's Theorem.

For if PQ be two points on a geodesic line, so near to one
another that the arc between them may be considered as a

jjlane curve, the length of PQ will be least when the curva-

ture of the curve is least, or when the radius of curvature of

the small arc PQ is greatest. But this will be the case when
the section of the surface by a plane through the element

PQ is a normal section. Hence the osculating plane at any
point of the curve must contain the normal to the surface at
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that point. But the direction-cosines of that normal to the
curve which lies in the osculating plane are proportional to

d^x d^y d^z

d?' dl' ds''

and the direction-cosines of the normal to the surface are pro-

portional to

dF dF dF
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Similarly, ^

dz dx

"ds-'dS^'^ (3)'

dx di/ ,,.

^ds-'^ds^'^
('^^

Multiplying (2) by x, (3) by y, (4) by z, and adding, vre

get

c,x+c.^7j+c^z = (5),

shewing that all geodesic lines are great circles.

184. As a second example take the ellipsoid

sf V^ 2^

^ + f^+? = l (!>•

The differential equations of the geodesic lines become

(fx cly d^
ds' _ ds^ _ ds^

X y z

'^^ w e

Now let J) be the perpendicular from the centre on the

tangent plane to (1) at the point {x, y, 2), and let r be the

central radius of the ellipsoid drawn parallel to the tangent

to the geodesic line at the point (x, y, z).

,2 „ ,2 „2

Then -2 = -4 + fi + -4

,

l_l(dx\\l (dy\\l(dz\\
r'~a'[dsj '^¥

[dsj '^c'\dsJ
'

1 dp _x dx y dy zdz

p^ds~a^ds h* ds c^ ds ^* "^^

1 dr _1 dx d^x 1 dy d^y 1 dz d^z

r^ ds
~

d^ ds ds^ h^ ds ds^ c^ ds ds'^

_ ( X dx y dy z dz\ , ,..

-Wdl'^¥ds'^?'ds)''
^*^'

if k be put for each of the fractions in (2).
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Now each of the fractions in (2)

X dj^x y d^y z dj^z

a'd?~^b'd?'^?d?
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185. We shall conclude this subject with the following

proposition, known as Dupin's Theorem.

If there he three series of surfaces such that all the sur-

faces of each series intersect those of the other series at right

angles, then the lines of interseciion of the surfaces of different

series are the lines of curvature on the surfaces.

Let be the point of intersection of three surfaces, one of

each system. Take as origin, and the tangent planes of

the three surfaces as co-ordinate planes. Let >S^^, S^, S^ be
the surfaces touched by the planes of y2, zw, xy, respectively,

and let P, Q, J? be points near in the curves of intersection

oiB^, S^; S^, S^; S^, S^, respectively. Then since the surfaces

S^, S^ cut at right angles, the normals at P to these surfaces

are at right angles. Also since OP is ultimately a tangent
line to both of them at P, the normals at P are both perpen-
dicular to OP which is ultimately the axis of x. Let 0^, 0^

be the angles which the normals at P to S^, S^, respectively

make with the planes of 2x, xy, respectively; 0^, (p^ those

which the normals at Q to S^, S^ make with the planes of

xy, yz, respectively, and -v/r^, -v/r^ those which the normals at

R to S^, 8^ make with the planes of yz, zx, respectively. Let
the lengths of OP, OQ, OR be a, jS, y, respectively.

Since the normal to S^ lies in the tangent plane to S^, the

tangent of the angle which the normal to >S^2 at makes with

the plane of xy islj-j , the suffix denoting the surface from

which the differential coefficient is obtained. Hence the tan-

gent of the angle which the normal to S^ at P makes with
the plane of xy is

/dz\ d_ /dz\

\dy) ^ dx \dyj
+

3

But

whence 6^ — ol-t- l-^-j ultimately.
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Similarly, *> = ^5^(^)3'

therefore - = n •

a p

Similarly, ^ - T7 > ^.
~ R '

a 7 ' 7

But since the normals to S^, S^ at P are at right angles,

Similarly,
</>i
+ </>3 = 0, "^2 + '^i = ^' whence 6^ = 0.

Hence the normals to S^ at and P both lie in the

plane of ooy and therefore intersect one another, and therefore

OP is the tangent to the line of curvature on >S^2 at 0.

Whence the theorem follows.

EXAMPLES. CHAPTER XIII.

1. Find the quadratic equation which gives the principal

radii of curvature at any point of an ellipsoid.

Deduce the position of the umbilici.

2. Find the umbilici of the surfaces

(1) xyz = a\

2 2 2

and find the value of the radius of curvature at the umbilicus

in each case.

3. Find the equation of the projection of the lines of

curvature of the surface xyz = (^^ on the plane of xy.
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4. Deduce the formulse for an umbilicus

r s t '

first, from the consideration that the two principal radii of

curvature are equal at an umbilicus ; secondly, from the con-

sideration that the directions of the lines of curvature at an
umbilicus are indeterminate.

5. Find the condition that the two principal radii of cur-

vature at any point of a surface may be equal in magnitude
but opposite in sign.

Find the points on the surface

Ax'' -f- By^ + Gz^ = l

for which this is the case.

6. Shew that if the origin be at an umbilicus and the

normal at that point the axis of z, the equation of an ellipsoid

may be put into the form

a^ + y^ -{- kz (z — a) + hyz + czx = 0.

7. Any chord is drawn through an umbilicus of an ellip-

soid, and its extremity is joined with the extremity of the

normal at the umbilicus. Prove that the locus of the inter-

section of the joining line with the plane through the umbili-

cus perpendicular to the chord is a plane.

8. Prove that the lines of curvature of the surface

a ax — b ax — c

are circles, and that the plane of any one of them contains

one of two fixed straight lines lying wholly on the surface.

9. Shew that pr is constant for all lines of curvature

which pass through the same umbilicus of an ellipsoid.

10. Shew that pr has the same value for all geodesic

lines on an ellipsoid which touch the same line of curvature.

A. G. 15
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11. Z7and Fare two adjacent umbilici of an ellipsoid,

P is any point on the surface which is joined by geodesic arcs

with U and V. Shew that the lines of curvature which pass

through P bisect the interior and exterior angles between

Ptr and PF.

12. If a point P move on an ellipsoid so that the sum or

difference of the geodesic arcs PU, PV joining it with two

adjacent umbilici of the ellipsoid is constant, shew that the

locus of P is a line of curvature.

13. Shew that at every point of a geodesic circle round

an umbilicus of an ellipsoid

d C 2 1 2 2

w^here a, h, c are the semi-axes of the ellipsoid, r the central

radius to the point, p the central perpendicular on the tan-

gent plane, and d the semidiameter parallel to the tangent to

the circle at that point.

14. The normal at each point of a principal section of

an ellipsoid is intersected by the normal at a consecutive

point not on the principal section ; shew that the locus of the

point of intersection is an ellipse having four real or imagi-

nary contacts with the evolute of the principal section.

15. From the differential equation of geodesic lines in-

vestigate the nature of the geodesies on a right circular

cylinder.

16. Find the equations of the geodesic lines on a right

circular cone ; first, from the differential equations, and
secondly from the consideration that when the cone is

developed the geodesies become straight lines.

17. Shew that the distance of any point of a geodesic

traced on a surface of revolution from the axis varies inversely

as the sine of the angle between the geodesic and the meri-
dian of the surface which passes through that point.
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18. Find expressions for the principal radii of curvature

at any point of a surface of revolution round the axis of x.

19. Prove that the product of the principal radii of cur-

vature at any point of a prolate spheroid varies as the product
of the squares of the distances of the point from the foci of

the generating ellipse.

20. Shew that the locus of the focus of an ellipse rolling

along a straight line is a curve such that if it revolve about
that line, the sum of the curvatures of any two normal
sections at right angles is the same at every point of the
surface generated.

21. If two surfaces cut each other at right angles, and It

be the radius of curvature of the curve of intersection at any
point, /3^, p,^ the radii of curvature of the normal sections of

the two surfaces through the tangent line to the curve at

that point, prove that

i_-i_ JL
^ 9x P2

22. If r, 7^' be the principal radii of curvature at any
point of an ellipsoid on the line of intersection with a concen-

tric sphere, shew that the expression -^^

, is invariable.

23. If a geodesic line be drawn on a developable surface

and cut any generating line of the surface at any angle -yjr

and at a distance t from the edge of regression measured
along the generator, prove that

where p is the radius of curvature of the edge of regression at

the point where the generator touches it.

24. Prove that if r be the distance of any point of a
geodesic from the origin, p the radius of absolute curvature,

and p the perpendicular from the origin on the tangent

plane to the surface.

1 d' (r-)

15—2
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25. The centres of curvature of plane sections of a sur-

face at any point lie on the surface

the axes being the tangents to the lines of curvature at

that point and the normal, and p^, p^ being the principal radii

of curvature.

If these sections touch a right cone of semi-vertical angle

a, about the axis of z, the centres lie on the elliptic paraboloid

—I- — = <^ sm a.

Pi P2



CHAPTER XIY.

ON VECTORS AND QUATERNIONS.

186. The student is familiar with the word radius

vector employed in plane co-ordinate geometry to denote the

distance of any point from the origin. In this case the

direction of the line is determined by another quantity

called the vectorial angle.

We shall now define the word vector as meaning the

transference, or step, of a point from one position to another.

A vector is determined when the direction and magnitude
of this transference or step are both known.

Thus if two straight lines AB and CD be equal and
parallel, A and C being towards the same parts, the vector

J.5 is equal to the vector CD.

If a point move from A to B and then from B to C, the

resulting step is one from A to C. This may be expressed

algebraically

vector AB -\- vector BC = vector AG
;

or, if we agree to represent the vector AB by the symbol AB,

AB + BG = AG (1).

This result is true whatever be the directions of the lines

AB and BG.
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187. The symbol AB in equation (1) does not merely
represent the magnitude of the line joining the points A
and B, but also includes the determinate direction in which
AB is drawn. In conformity with the use of the sign —
already adopted in measuring co-ordinates, a step from B
to A would be represented by the same symbol as one from

^ to jB with the sign — prefixed. Thus

vector BA = — vector AB
;

or, with the notation agreed upon,

BA = -AB (2).

188. By means of (1) and (2) it easily follows that, if

A, B, C be any three points in space,

AB-\-BC+CA = (3);

the meaning of this equation being that if a point travel

completely round a triangle, its final displacement is zero.

Obvious extensions of (1) and (3) are that if A,B, C, D, E
be any number of points,

AB^BG\GD^-I)E= AE,

AB + BG+GD-\-DE + EA = 0.

189. The symbol for a vector defines not merely the

length of the step but its direction. Thus if the symbol a

be employed to denote the vector AB, the symbol 2a will

reasonably denote a step in the same direction AB oi double

the amount, and so on.

It will be convenient then to represent vectors by a com-
pound symbol, one factor representing a step of a unit length

in the given direction, and the other factor giving the number
of units in that direction over which the particular trans-

ference takes place. This second factor is called the tensor

of the vector; thus if a denote a vector in any direction,

Ta the number of units of length in a, and Ua a unit vector

in that direction, we may write

a= UoL.Ta=Ta.Ua (1).
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190. Referring now to the figure of Article 4, let us

suppose that unit steps parallel to the axes of x, y, z re-

spectively are denoted by the symbols i, j, k. Then the

vector OM will be denoted by xi, the vector 01^, or ML
which is equal and parallel to ON by yj, and the vector OR
or LP by zk. Hence, since

OP = OM-^ML + LP (Art. 188),

we have OP = xi -\- yj -\- zk (2).

Thus any vector in space can be expressed in terms of

unit vectors parallel to the three co-ordinate axes.

191. If Ca denote a unit vector along OP and Ta the

number of units contained in OP, or the tensor of OP, the

equation (2) may be written

T:i.Ua = xi -\- yj + zk,

or
^'^^'Wx'^'^'hi'^'^ioL'^'

where {Toif = x' -^ y' + z' (Art. 4);

or, if I, m, n represent the direction-cosines of OP,

UoL = li + mj + nk (3).

The quantities x, y, z, Tql, &c., which merely represent

the number of units of length, on some given scale, contained

in vectors, are called scalar quantities.

192. If /3 be any vector, a step u^, where u is a scalar,

represents a step parallel to /S, the magnitude of which

depends on u. Thus r, a being any other vectors connected

with l3 by the relation

r = a + njS (4),

it follows that the end of the vector r always lies on a vector

drawn through the extremity of a parallel to /3. This equation

therefore may be regarded as the equation of a straight line

drawn through the extremity of one vector a parallel to a

second vector ^ ; u being the variable quantity which deter-

mines different points in this line.
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193. Let three given vectors a, yS, 7 be connected with
a fourth vector r by the relation

r = a + w/3 + 2^7 (4),

where u and v are scalar quantities which may assume any
values.

The step r is ejBfected by moving to the end of the vector

a, and from that point moving over u unit steps parallel to

the vector /3, and from the point now reached moving over

V unit steps parallel to the third vector 7. It is geometri-

cally evident that by changing u and v the extremity of the

vector r may be made to lie at any point of a plane passing

through the extremity of the vector a and parallel to the

two vectors ^ and 7.

Equation (4) may thus be considered the equation of this

plane, u and v being the variables.

194. If be any fixed point, and the vectors OAy OB
be represented by a and /3, the vector AB will be represented

by /8-a. For {Art. 186, (1)}

OA+AB=OB,
or AB = OB-OA

= l3-a.

Hence if C be any point in the straight line AB, such
that the length of AC=ux length of AB,

OC=OA+u.AB,

or y = a-]-u{/3- a),

7 denoting the vector OC.

This equation may be written

7 + a(ti-l)-Wy5 = 0,

or poL + qfi -\- ry = (5),

where j[), (/, r are any numbers in the same ratios as u— 1,

— 2^, 1.
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The only condition which p, q, r need satisfy independent

of u is

p-hq + r = (6).

Hence if (6) be satisfied and a, (3, y represent any three

conterminous vectors, the other extremities of these vectors

will lie in a straight line.

195. Again, let four conterminous vectors OA, OB, OC,

OD represented by a, /3, 7, S, be such that the points A, B,

C, D all lie in one plane.

Then in equation (4) of Article 193 we may replace ^
by ^ — a, 7 by 7 — a and r by 8. We thus obtain

g = a + li (yS — a) + V (7 — a)

or 0.(1 — u — v) +u^-\-V'y — h = 0,

which mav be written as

_pa + 5^/3 + r7 + 58 = (7),

provided jp, q, r, s satisfy the relations

P _?_''_ ^

1 —u — V u V — 1
*

The only restriction on the values of p, q, r, s is that they

satisfy the relation

JJ + q + ?' + 5 = (8).

If this condition be satisfied the outer extremities of any

four conterminous vectors a, /S, 7, B connected by the relation

(7) must lie in a plane.

196. As an instance of the use of some of the preceding

theorems we may take the following proof of a well-known

elementary theorem.

Let ABC be any triangle, A\ B', C the middle points of

the sides BG, CA, AB respectively. Then with the notation

of Articles 186—189 we have

BA' = A'C=\BG,
CB' =B'A = iCA,

AG'=G'B = \AB,

AA' = AB + BA\ BE = BG + GB', GG' = GA + AG'.
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Hence

AA' -^ BB' -h CC = AB + BO -^ GA + BA' -\- GB' +AC
= (AB + BG+ GA) + \{BG +GA + AB)
= 0. {Art. 188 (3).}

Hence AA\ BB', GG' are steps such that, if taken in

succession, the point returns to its original position, that is,

a triangle can be formed whose sides are equal and parallel

to AA\ BB', GG'.

197. A vector OA may be changed into another vector

OB in the same direction by a process of multiplication.

Thus if a represent the unit vector in this direction and X7,

yoL represent the two vectors OA, OB; OA becomes OB by

the process of multiplication by the fraction -

.

If the vectors OA and OB be not in the same direction

no arithmetical multiplication will convert one into the other.

Geometrically the conversion can be effected by two
processes ; first a rotation of the vector OA in the plane

containing both vectors into the direction of OB, and secondly

an extension or contraction of OA until its length becomes
the same as that of OB. The latter is a process of arith-

metical multiplication, and it is convenient to use the alge-

braical notation for multiplication to denote the whole of the

process so that if a and ^ denote the two vectors OA and
OB, we write

q. OA = OB (1)

q denoting the combined operation of rotation and extension.

198. The quantity, or more strictly speaking the entity,

q, is called a quaternion, ^y analogy with algebraical

phraseology since q is an entity whicli when multiplied into

OA gives OB, q may be said to be the quotient of OB by
07?

OA, and may be represented by the symbol prr

'

The equation (1) may be thus replaced by the equation

OB
OA<1 =^ (2)
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It is important to notice that, while the equation

OA

has a meaning, and with that meaning is true, the equation

OA .^,=0B
OA

has no meaning at present and is not therefore in any sense

true.

199. If the two vectors OA and OB be of equal length

the change of one into the other is merely an ojDeration of

rotation. In this case the quaternion is called a versor.

Since the operation denoted by a quaternion consists of

two parts, one of rotating OA into the position of OB and
the other of extending OA into the length OB, a quaternion

may be properly represented as the product of two factors,

one the versor of the quaternion and the other a scalar factor

which is called the tensor of the quaternion.

Thus if q denote any quaternion, and its versor and tensor

respectively be denoted by the symbols Uq and Tq we have

q=Tq. Uq= Uq . Tq (3),

since the order of the operations is clearly a matter of in-

difference.

200. The most important class of quaternions is that in

w^hich the angle between the two vectors is a right angle.

In this case the quaternion is called a right quaternion and

the corresponding versor a i^ight versor.

201. A right quaternion can be properly represented by
a vector. For a right versor is completely determined if the

plane in which the rotation takes place and the direction of

the rotation in that plane be known. A right quaternion

requires the additional element of the tensor.

The plane and direction of rotation are completely de-

termined by a vector drawn perpendicular to that plane so

that the rotation round this vector should be in the direction
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of the hands of a clock. Thus the vector will be drawn on
one side or the other of the plane according to whether the

rotation be clockwise or counterclockwise, or, as we may more
mathematically phrase it, be positive or negative. A unit

vector will thus completely represent a right versor and a

vector of length represented by the tensor will represent any
right quaternion.

202. Any quaternion whatever can be represented by
the sum of a scalar quantity and a vector.

For let OA be the vector which when multiplied by the

quaternion q becomes OB. Draw OC in the plane A OB

perpendicular to OA. and BC parallel to OA to meet OC
in a

Then {Art. 197, (1))

q.OA = OB
= OG+GB.

But the operation required to be performed on OA to

produce OC is a right quaternion, and that required to change
OA into CB is a scalar multiplication. Hence, if these

multiples be denoted by Vq and Sq respectively, we have

q.OA=^Vq.OA-\-Sq.OA,

or q = Sq + Vq (4).

But Vq may be represented by a vector, whence the pro-

position follows.

203. We have seen that if i, j, k represent unit vectors

in the directions of three co-ordinate axes, any other vector

can be represented by the expression

xi + yj 4- zk,
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where x, y, z are scalar quantities. Hence any quaternion

can be represented by the expression

u -\- xi -\- yj -\r zh (5),

where u, x, y, z are scalar.

Thus a quaternion in its most general expression consists

of four terms.

204. The vectors ^, j, k represent right versors, the

directions of rotation being in the planes of yz from y to z,

of zx from z to x, and of xy from x to y. (See figure of

Article 3.)

Thus i^ must mean a rotation of the vector on which i

operates in the plane yz, twice through a right angle. The
effect of this rotation is to reverse the direction of the operand

vector, or to multiply it by — 1.

Hence i^ = — 1.

A similar proof applies to any right versor, and we there-

fore have
i^=/ = fe' = -l (1).

Again, the product i.j denotes the effect of rotating a
vector Oy round Ox through a right angle. This brings it

into the position Oz. Hence

i .j = k.

The product
J*.

2 on the other hand denotes the result of

rotating the vector Ox round Oy into the position Oz.

Hence j .i = — k = — i.j (2).

Thus the commutative law does not hold good in the

multiplication of two vectors.

In a similar way we can obtain the relations

ik = — j = — ki (3),

kj = -i = -jk (4).

All these results are combined in the one statement

e=f = k' = ijk = -l (5).
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205. The product of two unit vectors which are at right

angles can, as shown in the last article, be represented by
a unit vector perpendicular to each of them. The product
of any two mutually perpendicular vectors can similarly be
represented by a vector perpendicular to each of them whose
length—or tensor—is the product of the lengths of the two
given vectors. The product of two vectors not mutually
perpendicular is not a vector but may be represented as a
quaternion.

Let the two vectors a and ^ be represented, as in Article

190, by xi + yj + zk and xi + y'j + z'k respectively.

Then a . y8 = {xi + yj + zk) . (xi + yj + z'k).

Assuming that the operation of multiplication by a vector

is distributive both as regards the operator and operand, this

gives

ay5 = XX i"^ + xy'ij + xzik + yxji + yyj"^ + yzjk

+ zxki + zy'kj + zzU\

which by means of the relations of the last article becomes

a . /3 = — (xx + yy + zz)

H- (yz — y'z) i + {zx — zx)j + {xy — x'y) k (1).

Thus the product of two vectors assumes the quaternion

form of Article 203.

If the two original vectors be parallel it follows from

Article 191 that

% = l-^. (2).
X y z

In this case a^ = — {xx + yy + zz), which, by an easy

algebraical transformation, taking account of (2), reduces to

oi^ = - J{x' + f + /) (x"' + y" + z")

= -Ta.Tl3 (8). (Art. 191.)

Thus the product of two parallel vectors is a negative

scalar, the product of the tensors of the vectors.

If a and /3 be identical this reduces to

a' = -(Taf (4).
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From this we deduce

a {Taf ^ ^'

or the reciprocal of a vector may be regarded as a vector in

the opposite direction to the original one, its length being
that of the original one divided by the square of its tensor.

If the two vectors be perpendicular we have by Article

191, XX \-yy' -\- zz =0. Hence in this case the product a^
reduces to a vector.

206. With the notation of (4) of Article 202, it follows

that

S(a^)=-{xx' + yy'-Vzz'),

F (a/3) = [yz — y'z) i + {zx — zx)j + {xy — xy) k.

By working out the value of /3ol in a manner similar to

that of the last Article it is easily seen that

V{^.a) = -V(a./3).

Thus, since l3a=S {(3ol) + V (/3a),

and ay8 = >Sf(a/3)+F(a/3),

it easily follows that

S(^a) = S(c/3)="^" (1),

F(c/3) = -F(^a) =?^^ (2);

results of considerable importance in the theory of quaternions.

207. There is a close relation between the quaternion g,

B
which represents the quotient — , and that which represents

the product ^ol.

Assuming the expressions for a and ^ of Article 205, let

B
u+pi + qj + rk represent the quotient -. Then (Articles

198, 199) it follows that

(u + pi + qj + rk) (xi + yj + zk) = xi + y'j + z'k.
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Multiplying out the two factors on the left-hand side and

attending to the laws of Article 204, we have, since the ex-

pressions on the two sides represent identical vectors,

px-{-qy + rz=0 (1 )

,

wo + qz —ry = x (2),

uy -{ rx — pz = y (3),

uz -\-py — qx = z (4).

From (2), (3) and (4) we easily obtain

px + qy -{• rz' = (5).

The geometrical interpretation of (1) and (5) is that the

vector part of the quaternion q is perpendicular to each of

the vectors a and /3, a result agreeing with that of Article

202.

From (1) and (5) we obtain

P ^ 9 ^ ^ my
yz —yz zx —zx xy —xy

S .

which shows that the vector part of - is parallel to the vector

part of ^.a (Art. 205).

Multiplying (3) by x and (2) by y, and subtracting, we
obtain

r {x' + 2/') - {p)x -\-qy)z = xy - x'y,

or r {x^ -\-y^-\- z') = xy' - xy, by (1).

\

X'' + y' + z^

Again, multiplying (2) by x, (3) by y, and (4) by z, and

adding, we obtain

u (x^ -\-y^-\- z^) = XX + yy' + zz.

S
On the whole, then, a or becomes

^ a

{xx + yy' + zz) + {yz - y'z) i + {zx - zx)j + {xy — x'y) k

x' + y' + z'

Hence each of the fractions in (6) is equal to — ^., ^ ^.^ .

I
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Comparing this result with (1) in Article 205, we have

with the notation of Articles 189 and 202,

V 12

208. The multiplication of a vector a by a second vector

13 at right angles to it, means that the first vector is rotated

through a right angle round the second, and then suitably

extended or contracted.

The product /3a, when a and /5 are not mutually perpendi-

cular, can be only interpreted geometrically by supposing it to

represent a compound operation on some third vector suitably

assumed. Thus the product ij in Article 204 may be regarded

as denoting a double operation to be performed on a third vec-

tor, which must first be in the plane zx, and after being rotated

positively through a right angle must lie in the plane yz.

Referring to the figure of Article 3 this vector must evidently

be either Ox or Ox. If we take the former and perform in

succession the two operations j and i it will pass successively

into the positions Oz and Oy : on the whole it will have

passed from Ox to Oy, that is, the operation denoted by k

will have been performed upon it. With this interpretation

of the product of the two vectors, we have, as before,

ij = L

209. It is evident that, in the general case, the inter-

mediate position of the operand vector must be perpendicular

to both a and ^.

Thus in the figure of Article 45 if Oz and Oz represent

the vector a and jS respectively and the angles cj), yjr be each

a right angle, the operation /Sol performed on the vector Ox
will turn it from the position Ox to Ox^, and then from Ox^

to Ox ; or on the whole turn it from Ox to Ox and multiply

its length by the product of the tensors of a and yS.

This operation is equivalent to that effected by multipli-

cation by a quaternion. The connection between the plane

A. G. 16
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of this quaternion and that of the original vectors can be

investigated either by Spherical Trigonometry or the formulae

of Analytical Geometry.

210. The multiplication of a vector by a quaternion

whose plane contains the vector can be geometrically re-

presented by a rotation of that vector through some angle

in that plane, combined with a suitable extension or con-

traction.

The interpretation of the product of a quaternion into a

vector not lying in its own plane can only be made by assum-

ing the vector to represent a right quaternion, and that the

product represents a compound operation to be performed on

some suitably chosen operand vector.

The product of two quaternions in general can be similarly

interpreted geometrically.

211. If there be three vectors or, /9, 7, the scalar part of

their product, or S(oi^j) has an important geometrical in-

terpretation.

Let the vectors be denoted by wi + yj + zJc, x'i + y'j + z'k,

x'i -t- y"j + z"h respectively.

Then we have

a/i?7 = {xi + yj + zk) [x'i + y'j + z'k) {x'i -\- y'j -}- z"k).

The terms in the product will be of one of the three type

forms ai^y ai^j, aijk where a is some scalar. Terms of the

first two types will, by Article 204, reduce to a vector form

;

the scalar jmrt of a/37 ^"^^^^ ^® entirely deducible from the

third type.

The first term of this type is xy'z'ijk or —xy'z", the others

can be deduced from this by interchanges of the letters xyz

combined with corresponding interchanges of ^, j, k. By
Article 204 it follows that any interchange of two of these

latter changes the sign of the product. Hence the whole

assemblage of these terms or B {p^/Sy) will be properly re-

presented by the determinant

xyz
X y z

'f n
X y
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From the theory of determinants it easily follows that

S(al3y) = S{l3ya) = S{ya/3) = -S{ay/3} =- S{yl32) = - S{ffoiy),

and from the formula (3) of Article 32, the numerical value

of each of these is six times the volume of the tetrahedron of

which the three vectors a, ,/3, y are conterminous edges,

212. Again, since

affy = [xi -f yj + zh) {xi + y'j + z Jc) {x"i + y"j + z"h)

= {xi + yj + zh) [
— {x'x" + y'y" + zz") + (yz" — y"z)

i

+ {zx" - z'x) j + (x'y" - x"y') h] (Art. 205),

the vector part of a^y, or V((x^y), will consist of two portions,

the first of which may be denoted as aS {^y), and the second
is the vector part of

(xi + yj + zk) {(y'z" — y'z) i + {z'x' — z"x')j + {x'y" — x'y) k],

w^hich may be written V[a . V{0y)].

Working out this product in accordance with the rules of

Article 204, the coefficient of i in the vector part becomes

yyxy —xy) — z{zx —zx),

which = x {xx" + yy" + zz") — x" {xx + yy' -\- zz)

= - xS {ay) + xS (a/3). (Art. 205.)

Hence on the whole

V[0LV{^y)] = - {xi + y'j + z'k) S {ay) + {x"i + y"j + z"k) S (a^)

= -/3S {ay) + 7>Sf («/3).

Thus finally

V {-xfiy) = aS {I3y) - ^S i^i) + r^S (^-xP) (1), .

and therefore

apy = S{a^y) + V{oil3y)

= S (oilSy) + aS {^y) - ^S (^7) + 7>Sf (a/3) (2).

The product of three vectors is thus expressed as a qua-
ternion.

It may be noticed that the necessary condition that the
product of three vectors may be a vector, is that

S{a^y) = 0.

16—2.
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From this it follows that the volume of the tetrahedron of

which the vectors a, ft 7 are three conterminous edges must
vanish, or the three vectors must lie in one plane.

213. From Article 205 it follows that if two vectors a

and /3 be parallel

rm = (1);

while if they be perpendicular

S{a^) = (2).

Hence if p be a variable vector and a a fixed vector, and
the condition

>Sf(pa) = (3)

be satisfied, the extremity of the vector p must lie somewhere
in a plane through the origin perpendicular to the vector a.

The equation (3) may therefore be regarded as the equation

of this plane.

214. The equation

S{p-/3}a = () {i)

indicates that the vector p — /3 is perpendicular to the vector

a. But p — 13 is the vector which joins the extremities of the

vectors p and /3. Hence if these points be called P and B,

and OA be the vector a, the equation denotes that BP is

perpendicular to OA. Hence, if a and /3 be fixed vectors

and p a variable one, (4) is the equation of a plane through B
perpendicular to OA.

215. To find the equation of a plane passing through

three given points.

Let the three given points A, B, bo determined by the

vectors a, /B, 7 and let p be the vector to any point P of the

plane. Then the vectors AP, BP, CP are represented by

p — CL, p — /3, p — <y (Art. 18G), and these are co-planar vectors.

Hence (Art. 212)

S[(p-a){p-l3){p-ry)]=0 (5).

This may be regarded as the equation of the plane re-

(juired, but it can be reduced into a simpler form.



ON VECTORS AND QUATERNIONS. 245

If the multiplications indicated be performed we obtain

eight terms, of which four, namely, those which contain three

or two factors p, are the product of co-planar vectors. These

all vanish by Article 212, and we have left

S {ppy + ap7 -f a/3p) - S (a/By) = 0,

or as we may write it by Article 211,

Sp (I3y + 7a + c(/3) - >Sf {a^y).

But since /3y = S {^y) + V (I3y)

Sp^y = 8 ipSfiy) + S (pV^y)

= S(pV^y),

since pS/3y is a vector.

Hence this equation may be written

S {p {V^y + Vyx + Va^)} - S2l3y = (6).

Let the vector V/Sy + F7a + Fa/3 be denoted by S.

Then SiS = S{a(Vl3y+VyoL+Va^)}

= S (al3y) + S (ayx) + S {aoi/S)

==S(a^y),

since the other two terms vanish. (Art. 212.)

Hence (6) can be written

SpS = S2S, or S(p-a.)B = 0.

Comparing this with (4) of Article 214 we see that S, or

V(l3y)+ F(7a) + V{al3), is a vector perpendicular to the

plane ABC.

216. The equation of a straight line coinciding in direc-

tion with a given vector a can be written as p = ic7. where
1^- is a variable scalar.

Hence the equation of the straight line through the origin

perpendicular to the plane (6) can be written

p = uS (7).

Hence, at the point where (G) and (7) meet, we have
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But (Art. 205) uh^ is entirely a scalar. Hence this gives

uh' =-- S («/37),

and dividing these equals by S we obtain

^ 8 Vl3y + Vyoi + Val3

'

which gives the value of the perpendicular on (6) from the

origin in direction and magnitude.

217. The equation

Tp = To^ (1)

signifies that the absolute length of the variable vector p is

equal to that of ot. Hence (1) may be regarded as the equa-
tion of a sphere whose centre is the origin and radius is'T(a).

The equation gives, by (4) of Article 205,

p~ = a".

Now (p —a){p-\-a) = p^ — a^ -\- py. — ap

= p'-a'+2 Vp2. {Art. 206 (2).}

Hence S (p — a.) (p + a) = 0, if p satisfy (1).

Thus the two vectors p — a and p + a are mutually perpen-
dicular: but these are the vectors which join the extremities of

the diameter in the direction of a with the variable extremity

of p. We thus obtain the well-known geometrical property,

that the straight lines joining any point of a sj^here with the

extremities of a diameter are at right angles.

218. The space at our disposal will not allow further

discussion of this subject or of its applications. It is hoped
that this slight sketch of the ali)habet of quaternions may
enable students to understand some references to it which
they may meet with in their reading, and possibly incite

them to study works specially devoted to it. Among these

may be mentioned Tait's Elementary Treatise on Quaternions,

Houel's Tlieorie Elenientaire des Quantites Complexes, 4™^

Partie, and, chief of all, that stupendous monument of the
powers of the human intellect, Hamilton's Elements of Qua-
ternions.



ANSWERS TO THE EXAMPLES.

CHAPTER I.

1. JS,2j3andj3.

2. The length of each side is ^6..,123 , 2 3 6 26

^' ^^- ^' 2' 2' "^ '2' 2' 2' ' 2*

7.
a 6 c

^

3' 3' 3'

1^

3

9. If r^, 0^, ^,, r^, ^2, ^., be the polar co-ordinates of the

points, the (dist.)^ between them by Arts. (6) and (15)

= (r^ sin 6^ cos c}>^ - r^ sin 0^ cos <^y

+ (r^ sin ^1 sin ^^ — j'^ sin ^^ sin <^y + (7*^ cos 0^ - r^ cos ^g)^

= T^ (sin^ ^j cos" <^j + sin^ ^j sin^ ^^ + cos^ ^J
+ r^ (sin^ ^„ cos^ c^, + sin" ^^ sin^ <^., + cos^ 0^
— 2i\7'^ {sin 0^ sin ^., (cos ^^ cos ^., -i- sin cji^ sin <^,)

+ cos 0^ cos ^J
= r^^ + r/ - 2rjr2 {cos 0^ cos ^^ + sin 0^ sin ^^ cos ((/)j

- cft,^)}.

10. r^4, ^=|, c^ = ^.

11. x=l, y = J'^, z = 2j'6.
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CHAPTER 11.

1. —-^=^-2 =—T^. 2. x + z = 4:. ?/ = 2.

^-
2/ = 2j z = lj

^-y---
2 j' 6'2'a-

4. x + ij + z=Q; 2j3. 5. x = ^=^.
2 3

6. aj-l =-^^ = s-3.
3^/3

7. Let (a, /3, y) ;
(a', p', y), be the two points, Ix + my + nz=p

the given plane. Then the required plane can have its equation

in the form

A{x-a)+-B(y-P)+C{z-y) = 0, .

and A, B, C must satisfy the two conditions

A(a'-a)+B {P'
- yS) + C (y' - y) = 0, Al + Bm + Cn = 0,

whence

A : B : G :: m (y -y)-n{(S' - (3) : n {a' -a) - l{y -
y)

: l(^'-l3)-m(a-a).

8. z=3, x + y = 3.

9. Let A (x - 2) + B {y - 3) + C (z - i) = rejjresent the

plane required
;

.-. ^(l-2) + i?(2-3) + (7(3-4) = 0, or A + B+C = 0,

A . J3 + B + C . 2^3 = 0,

whence A : B : C :: 2 Js - 1 :-j3 : 1 -^3,

and the plane becomes

(2 V3 - 1) (a; - 2) - V3 (^ - 3) + (1 - Js) {z--i) = 0.

10. Let I, 7)1, n; l', m', oi be the direction-cosines of the

given lines
; \ fJi, v those of the required one

;

.*. kl + jxni + v7i = 0, XI' + ixni + vn — cos a.

The latter equation gives

(A.^ + ixm + vn)' = COS" a (/V" + fx" + v').
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which combined with the former will give two values of the

ratios A. : /a : v, as in Art. 57. For the latter part put cos a = —--

and find the value of X^X^ + ^^/x^ + v-^v^ ; remembering that as

W + mm + nn vanishes this will also be found to vanish.

11. Let (a, P, y) be the given point, I, m, n ; l', m', n' the

direction-cosines of the perpendiculars on the two planes. The
required plane is

(77171 — m'n) (x — a)-¥ [nV - n'l) (y - P) + {I'm' — I'm) (x — a) = 0.

(See Art. 30.)

12. The proof of Art. 19 holds when the axes are not

rectangular if I, m, n mean the cosines of the angles between
OD and the axes.

13. Draw the oblique co-ordinates of the point D, and pro-

ject OD on the axes in succession.

l + m cos V + n cos u m + n cos X + l cos v
^^- 1 = B

n + 1 cos fx + m cos A,

15. The condition is

{X - a)' + {y- Pf + {z- yf = (x - a'f + {y - ji'f + (« - y'f,

which reduces to

(a'-a){.-'^}.(/3'-^){,-^^'}.(y-,){.-I±l'} = 0.

16. (1) A series of planes parallel to that of yz; iovf{x) =0
gives a series of equations £c = «,, x = a„, tfec. (2) A series of

spheres with the origin as centre. (3) A series of right circular

cones with Oz as axis. (4) A series of planes passing through

the line Oz.

17. (1) The axis of z. (2) A straight line OP through

inclined at an angle a to Oz, and such that the plane zOP makes
an angle ^ Avith zOx. (3) A circle whose radius is a in the

plane of zx and with its centre at the origin.

D Ti-

ls. ^ cos ^ sin^ + i>sinrf) sin ^ -I- Ccos^= — . 19. -.
r ^ 2
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20. Let Zj, m^, n^ ; l^, m^, n^ ; ^3, m^, n^ ; be the direction-

cosines of the normals to the three planes. Then the equation
of any plane through the line of intersection of the first and
second is

where A is a constant, and if this is perpendicular to the third,

or cos ^ + A. cos ^ = 0.

Also if the plane passes through the origin p^ + Xp,^ = ;

.
'. p^ cos A = J) 2 ^^^ ^'

and the plane becomes

{l^x + m^y + n^z) cos A — {l^x + m,,y + n,^z) cos 5 = 0.

If in addition jp^ cos 5 = ^9^ cos C, the other two planes will

have equations of a similar form and all three planes will inter-

sect in one straight line through the origin.

21. Let Ix + my + oiz ^ 2^ ^® ^^^^ equation of one of the

planes

;

.-. from the data ^ + — +- = 0, or - + — + - = (1),
I m n I m n ^ '

and l{a -a) + m{h'-h) + n{c -c)-^0 (2)

;

.*. substituting for n out of the second in the first

11 c'-c
-- -\. = (J

•

I 1)1 l{a —a) + in{b'— b) '

. •. I' {a' -a) + rim + m' (b' - 6) = 0,

which gives two values of — , and corresponding to each of these

n II
from (2) we can get one value of — . If -^ , --be these two

^ ' ^
TYi m^ m^

values, - ' ^ =-7- . Simihirly - ' ^ =
, .

•))i{ni^ a —a 'm^ni^ c — c

Hence if the lines be at right angles

- IJ. 7i,n„
1 +—^^ -I-

-i -^ = :

h'-b b'-b ^
1'

1 1 ^
.-. 1 +- -I- -, =0j .'. -;

+J-, 7 + -, = 0.
a —a c - c a -a —b c —c
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22. -. This and Example 23 are to be solved as the last

example.

23. P {B' + C) 4- Q iC' + A') + B (A' + B') = 0.

24. The co-ordinates of the middle points of the lines joining

1, 2 and 3, 4 are, Art. (7),

and i(c-a), J(c + cZ-«-5), |-(fZ-&),

whence the result follows.

25. The co-ordinates of any point on one of the lines may be
represented hj a + lt, b + mt, c + nt ; and those of any point on
the other by a + I't', h' + mt\ c + ri't'. The square of the dis-

tance between these points is

(a - a' + U- I'tJ + {b-b' + mt - m'ty + (c - c' + nt - n'tj.

The conditions that this may be a minimum by the variation

of t and t' are

(a-a'+U- It') l+{b-b' ->tmt- mt') m+{c-c+nt- n't') n = 0,

and

(a-a' + U- I't') r+{b-b' + mt - m't') m' +(G-c' + nt- n't') n = 0,

which shew that the line joining the two points is perpendicular

to both the given lines.

26. By the solution of the last question,

I (a - a') + m (/5 - /?') + n {y-y) + t- 1' cos <9 - 0,

I' {a- a') + m' (13 -/3') + n'{y-y') + t cos e-t' = 0,

whence t' sin^ O — u' + u cos 0.

27. Taking x^, y^, z^, &c. as the co-ordinates of the angles of

the tetrahedron it is easily shewn that the co-ordinates of the
middle point of the line joining the middle points of two
opposite edges are

^ (x^ + x^-^ x^ + x^), &c.

28. By the help of a figure and the last question it is easily

seen that the two lines x, y are the diagonals of a parallelogram
whose sides are ^ct and ^a and w is the angle between the dia-

gonals, whence by Trigonometry the result follows.
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29. —=. if c is the ed^e of the cube.

30. J sjb'c' + c'a' + a%'.

31. The equations of the planes are

lx + my + nz=p, mx + ny + Iz - j:), 7ix + Iy + mz=p

;

- P
« , cc — 2/ — ^ — 7

•

t + m + 7i

32. Any point on the given line can have its co-ordinates

expressed by a — It, b - 7)it, c — nt; the value of t is obtained

from the condition of perpendicularity.

33. Take the shortest distance between the lines as axis

of z, its middle point as origin, and the plane of zx to bisect

the angle between the lines.

CHAPTER TIL

1. r^ + r {A sin 6 cos <ji + B sin sin ^ + C cos 6) + I) ~ 0.

This equation gives two values of r the product of which is D.

2. The polar equation of any plane is

A sin 6 cos cf> + B sin sin ^ + C cos 9 = — .

Hence if this be the equation of the locus of F, since OP =

the equation of the locus of Q is

Br
A sin 6 cos cfi + B sin sin ^ + C cos - ,.j ,

which is the polar equation of a sj^jhere.

3. If the locus of B be

r" + r (A sin 6 cos
<f>
+ B sin 6 sin ^ + C cos 6) + I) = 0,

that of (? is

/j' + k'r (A sin cos ^ + ^ sin 6 sin ^ 4- C cos ^) + Br = 0,

which is another sphere.

OQ'
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4. The plane in question is

XX + yy + zz = X + y + z = c

,

also where it meets the sphere x^ + y^ + z^ = c^,

whence x^ + y^ -{-
z' —

'2 (xx + 7jy' + zz) + x' + y'^ + z"^ = 0,

or {x - x'f + {y- y'Y ^{z- z'f = ;

/ / _^ /

• • yU tXy
J IJ — y 5 "^ —" ^ •

5. Take A as origin and AB (=ci) as axis of x, the equation
of the locus is

£c- + 2/^ + 2;^ = m^ {{x - of + y^ \- z^],

which reduces to the equation of a sphere.

6. With the same axes as in the last question the two lines

whose direction-cosines are proportional to x, y, z and x — a, y, z

must be at right angles. Hence x (x — a) + y~ + z' = 0, a sphere,

on ^^ as diameter.

7. Take for the equations of the fixed straight lines those

given in Ex. 33, Chap. 11. The equations of the two planes can

then be written y — mx + A, (2; — c) = and y + mx + /x (2; + c) =
where X. and fx are constants. The condition of perpendicularity

gives 1 —7)f + Xfx = and by substituting for A. and /a out of the

Urst two in the third we get (1 — m^) (z^ — c^) + y^ — m"ic^ ^ as

the locus.

8. If >S' = 0, /S" = be the equations of two spheres in their

simplest form, the equation S' — /S = is easily seen to be a plane

perpendicular to the line joining their centres, which muse cut

each sphere in a circle.

9. The equations of the spheres can be written

S - kr' := 0, >S" - h'r' = 0, S" - k'V = 0,

where k, k', k" are constants and r changes. The first and second

»,S' iS"

intersect on the sphere ^— -,7 = 0, whence the rest will follow.

10 and 11. These follow easily from (8).

12. The six centres of the spheres must lie at the angular

points of a regular octahedron the edge of which is the radius.
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13. Take the three planes as co-ordinate planes, and let

I, 7)1, n be the direction-cosines of the straight line, x, y, z the
co-ordinates of the point. Then by projecting on the axes in
succession x = la, y = mb, z = nc

;

2 2 2X y z ,
• u — -}--= 1
a 0^ c

14. We have

cr. -4- n. Qi >>'

-OF,
X
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CHAPTER IV.

1. 2^3, 0, -n/2: 2. x"-'^^^,

3. Take x — y — z and any two straight lines perpendicular
to it as axes : the axes in the last question will do.

4. From the last two of the second set of relations the ratios

of l^y ^2' ^3 ^^^^ ^® deduced, and their absolute values from the
first, with the help of the other three.

5. 3, 3, — 3, use Art. 51.

6. The proof is exactly similar to Art. 50 with the excep-

tion that

0^ -Vy^ -{ %^ \- lyz cos X + ^zx cos /x, + ^xy cos v

is transformed into x'^ + y'' + z^,

7. Transform so as to take the line x — y = z as axis of x
and any two lines perpendicular to it and each other as axes
of y and z : as in Examples 1 and 2.

CHAPTER V.

1. The direction-cosines of the generating lines through any
point (a, yS, y) are given by

V ni^ n^ la . m^ ny

a a G a a c

The condition that these shall be at right angles is obtained as

in Examples 21—23, Chapter ii., and gives by the help of the
2 . 02 2

relation r, -^ = 1, a value of y^.

2 and 3. The direction-cosines of the generating lines are

given by

la. mB ny ^ , T 7}f r^ _

From these we easily get, eliminating mi.

r /o^ ^\ _ 2lnay n
2 I „2 + 7,2 ) ^,2^2 + ^2 ( ^2 ^2 ) " ^'
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Whence

c \c / c \a^^ c \c b J c \a- J a -a^

n^n^ 2 /^'
.

^'\ ^ f^ , Y^ v" + c

J a \ c J

2 )

2 I 2 2 2a \a

2ay
•
2~2

Whence by symmetry we get

^7? " ^^^P " /T? "
2^8^^ " ~^27a" " 2a^"~ '

and if ^ be the angle between the two straight lines, each of these

ratios

cos B
"

(a^ - a') + (/3^ - b') + (y' + c')

sin 9

\/4 {/3y - (^" - b') (y" + c")} + . . . similar terms

.•.cot^=
a- + ^- + y--a--6- + c-

2 7y=^ (a=^'+ 6^) + p" {cr - c') + a' (b' - c') + b'c' + cr? - a'b'

'

The solution of (2) easily follows by putting b = a, and 6 = a.

4. If I, m, n ; l\ m\ oi' be the direction-cosines of the two

radii vectorcs, these Avith - - - — , 0, ,—— form a set of
b Ja' -c' b Ja^ - c

nine quantities satisfying the conditions of Art. 44. Also if r, r

be the two radii

r' = aT + ¥m^ + cSi\ r" = aH" + b'm" + cV
;

.-. r"- + r" = a' (f + l") + b' {nr + m") + c' (rr + n")

_ a* jb' - c') + b* jar - c"-) + c* (a' - b')

b'{a'-c')
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5. Planes parallel to Ix + my ^nz = and Vx + my + n'z — 0.

(\2 2 " o
X + y + z) -X -y -z" .

,

,

u. -^tj-tij^-f,.^- '—-^ , whence the result

follows.

7. By Art. 59, the projections of OP, OF' on the plane of xy
are tangents to the principal ellipse at the ends of conjugate
diameters. The sum of the squares of these projections is there-

fore cr 4- y^. Also the height of above the plane of xy can be
easily shewn to be c, whence the result follows.

8 and 9. If X, /x, v be the direction-cosines and r the length
of any radius vector in the plane Ix + m?/ \-nz — ^\

r a c

while XI + /xm + v?i = ... (2). If the section be a rectangular

1 hyperbola two direction? at right angles make - vanish. By the

methods of Ex. 21—23, Chap. ii. the condition for this is found.

The condition for a circular section is that -g shall be invariable
r

for all values of X, /x, v consistent with (2) ; whence \l + fxin + vn
must be a factor of

flV V\ XfX

where h is the constant value of —, . For the rest see Art. 49.

10. By Art. 63 the generating lines at any point (x, y, z)

must be parallel to the asymptotes of a section by a plane through
the centre parallel to that which cuts the surface in these two
lines. The equation of such a plane is by Art. 58

ax By yz -— + V^ + ^ = 0,
a c

if (a, (3, y) be the point : the semi-axes of the section by this

plane are given {Art. 68 (10)} by the equation

a {a- r") 6 (6 — r') c{c~ rf

A. G. 17
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Also if r^^ T^ be the two values of r^ in tliis equation and 10
the angle between the asymptotes of the curve

tan^(9 = _^;

.-. COS 2^ =^ '
•

7. 2 _ 2 ^

'2 ' I

which is the required result.

11. The square of the distance of the focus of any section from
the centre is the difference of the squares of the semi-axes of that

section. Hence if p, X, fi, v be the radius vector and direction-

cosines of any point in the locus, p^ = i\^ ~ r^^ where r^, r^ are the

two values of r in equation (10) of Art. G8, and A, /x, v are de-

termined by equation (12) of that article; between these equations

and (5) we have to eliminate I, m, n^ and for Xp, yap, vp to substi-

tute x^ y, z.

12. X' ^if -vz^ - {Ix + my 4- nzf = or. See Art. (28).

13. A+B + C=^0. See Arts. 34 and 44.

14. If lx + 7)iy + nz~0 ... (1) be the equation of the plane

base, the co-ordinates of the vertex are sjiven by 7 = — = - = 5.
C m n

Let then '—r— =- = ^
- - =r... (2) be the equations of

A fX V

the generating line ; substitute for x, y, z from these equations

in (1) and the equation of the ellipsoid, and eliminator. Thus we
get a relation between A, /x, v and then from (2) the equation of

the cone as in Art. 34.

15. x^ -vy' ^z^ -1y% — 1zx-1xy = ^.

16. a;^ 4- 2/^ -I- 2;^ = (Ix -\- my + nz)' sec' a. See Art. 2%.

17. Determine I, m, n and a in the last question so as to

make the cone contain the given lines.

18. Is solved in question (2).

19. Assume \x + /my -hvz^ 0...(1) the plane; .'. Xl + iJim + v)i= 0.

Eliminate z between (1) and the given cone. We get a cubic

equation in - one value of which must be -j ; the product of the
X c

other values is easily obtained. See Ex. 23, Chapter 11.
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20. These values satisfy the equation of the hyperboloid
whatever <^ and 6 may be. Substitute in the equations of Art. 57,
and we shall get finally

x — a cos <^ sec 9 y — h sin <^ sec 9 z — c tan 9

a sin (cfi^O) — b cos (cfi^O) ± c

21. Use the equations in the last question.

22. Any planes through the two generating lines in question
may have their equations written

a \o cj a \b cj

The condition that the line of intersection of these should be a
generating line is easily found to be kk' = — 1.

It can be shewn that the intersections of these planes with
either of the planes

- Va^T7±|Vf7^^=0
c b

are always at right angles to each other. These are the planes
which give circular sections.

23. Take the general homogeneous equation of the second
degree in a, p, y, 8. Find the conditions that this may be satis-

fied by either of the pairs a = 0, y = 0, and ^ = 0, 8 = 0.

24. Substitute x^{x' - z) cos 9, z- {x + z) sin 9^

where tan 9 =
ajb'-c''

CHAPTER YI.

1. If X, /x, V be the direction-cosines of any generator of the
given cone a^X^ + b'fx^ + cV^ = d', whence by Art. 79 the result
follows.

2. Use equations (6) of Art. 77, and in the ^iven case by
Art. 78,

2

P _^,^
2 , 2 2 — "'3

dH' + b^m^ + cr71

and the locus becomes
8 2''

17—2
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3. Use formulae of Art. 74 to shew tliat tlie plane passes

through the three given points.

4. „—T^ , where p is the perpendicular from the origin on

the plane LMN.

Trahc
5. volume

3^3*

, 6. A cylinder whose axis is parallel to Oz and whose trace

on the plane of xy is given by

ah
/
.,... ;. T-n ( 1

c^(^^^sin^^ + &--cos^^)
)
h— = Ja- sin- + b cos ^ -^ 1 ^^

^7^ \ .

r ^ ( a'W j

7. Let a, ^ be the co-ordinates of the point where the straight

line cuts the plane of xy^ and let a line be drawn inclined at an
2 2X 11

angle B to Ox to cut the ellipse -^ + ^ = 1 in two points. If r^, r.,

be the distances of these two points from a, /?, the square of the

eccentricity of» the vertical section through a straight line x — a^

(r ~tY
y-p supposed to be its directrix must = I -^ ^ > , but it also equals

C^ (a^sin^^ + ft^ COS"^)
, K ^ nn ^

'
• ^

1 ^^ STT— — by Art. oo, whence since ?•, and ?% are
a b'

'

expressed' in terms of 6 we can get a quadratic equation in tan'^

the roots of which must be real.

8. Use Art. 77, 2^ being a constant

:

/x^ tr' '^\ /x^ v^ '^\'

9. If a', h\ c' be the conjugate semi-diameters, and x\ y, z

the co-ordinates of the point in which the three planes meet

X - x'^

A a

by similar triangles and Art. 79.

10. We have to find the directions of the axes of the section

of Ax^ + ]hf + Cz" -- 1 by the j)lane Alx + Bmy + Cnz = 0, where

PI- + Qm^ + Rif = 0. See Art. QS, Equations 5 and 12 and elimi-

nate Z, m, n.
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n /I \ _ ?^ J^^ _^ /3 _ _ ^ ^ ^li. (i; ''-
1
+ 2l-2B'^2l'C'

^~ 21B''^~ 21C'

(2) 2BI3{b-/3) + 2Cy{c-y) = a-a if a, 6, c be co-

ordinates of the fixed point.

1 2. If X, y, z be the co-ordinates of any point on the perpen-

dicular,

ax by cz

x^ + x^ + x^
~
y^+ y, + y^

~
^,+ z, + gg _ ^aV -f- 6y + cV

a b G J3
by Art. 74, .

X y z xx^ -t-
2/2/, + zz^

~ x^+ re, + a?3 ~
2/i + 2/2 + 3/3

~
^1 + ^2 + '^

a3
2 12 2

whence the result follows.

13. If the curve be a parabola the line joining its centre

to the origin must be parallel to the plane, whence the result

follows.

CHAPTER VII.

1. (1) The discriminating cubic is s^- 10/ + 13s + 47 = 0.

This has tw^o positive roots and one negative root by Descartes'

rule of signs, all the roots being real. Hence the equation repre-

sents a hyperboloid of one sheet.

(2) A hyperbolic cylinder.

2. (1) Hyperboloid of revolution whose centre is at the

point (2, 1,0); of one or two sheets according as a > or < 0.

(2) Co-ordinates of centre - f
i - if, yV ; hyperboloid of one

sheet.

(3) A parabolic cylinder.

(4) A hyperboloid of one sheet.

3. The two equations merely differ by Ir (x^ + y^ + ^') which

remains unaltered by any transformation round the origin.

The. second is a right circular cylinder, the first a spheroid.
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4. An ellipsoid if 1— /x<^2, a liyperboloid of one sheet

5. An ellipsoid whose centre is at the point -j- , — , —

:

the equation when z = can be put into the form

6. See Example 6, Chapter iv. Wrong reference in question.

7. Take the general equation of the second degree and find

the conditions that it may be satisfied when a; = and z=0, and
also when y = and z = 0.

10. See Art. 150 for the condition that the equation repre-

sents a surface of revolution, and Art. 90. These conditions give

ii c = a+b, b' = 0, c' = ah, and the equation can be written

"\ 2 -,"2

(xja + y Jhf + c(z-\--\ + 2a"x + 2h"y + c^ -^ = 0,

which can be again written

z -h —\ +2 {a" - h Ja) X

+ 2{b"-kjb)y + d ^-'-0.
c

And if k be so chosen that xJa + y Jb + /t = 0, and the line

2x {a" -kja) + 2y (b" - k Jb) - 0,

c"
are at right angles, the former united with z -\— =0 must give

c

the axis.

11. z^ + cxy ^- W.

12. Take for the fixed straight lines a;=0, ?/ = 0;aj = CT, 2; = 0;
ji/ = &, z = c\ and take the equations (3) of Art. 1 7 as the gene-

rating line : the equation becomes

— ayz -\- hxz = cy (x — a).

13. The condition required is that

Ak' + Bfx' + Cv' + 2A'fxv + 2B'v\ + 2C'XfJL

shall retain an invariable value for all values of A, /x, v consistent

with Ik + nifx + nv = 0. See Art. 173.

14. Eliminate s between the equations (1) of Art. 83.
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15. If x\ y'j z be the co-ordinates of tlie vertex, the equation
of the cone is

And by Art. 50 equation (7) it follows that

CHAPTER YIII.

1. x^ + y^ + z^ = a^ +h^ -\- c^. Use equation 5 of Art. 101.

2. A similar and similarly situated ellipsoid whose axes are
double those of the first.

3. Use Art. 101.

4. {x{x-a)+y(y-l^)+z{z-y)Y=a\x-aY+h\y-py+c\z-yf.

5. a\x-aY+h''{y-PY-¥c'{z-yy
^{a(x-a) +p(y-P) + y{z-y) +hJ.

6. The conditions that the normal to the ellipsoid at {x, y, z)

shall pass through (a, p, y) are

^^ {x - a) ^ b^y-P) ^ c^z-y) ^ ^
X y z

^

and these combined with
2 2 2X y z ^

1- — H = 1
2 LJ ^^ 2 — ia c

give an equation of the sixth degree in k. All six lines lie on
the cone

X — a y ~ P Z — y

7. Obtain the condition that the normal at the point {x, y, z)

may intersect a given diameter - = - = - . By properly choosing

Xj /Lt, V this condition can be made identical with

I TYi n ^- + — + - = 0.
X y z
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8. The tangent plane to any such ellipsoid can have its

equation written as

Ix + my + nz = Ja^l^ + h^m^ + c^n~ — k^,

whence by Art. 77 (6) the result can be obtained.

9. There will be one straight line in the tangent plane at the

extremity of the radius, perpendicular to the radius.

10. If lx + m7/ + nz=2y be the equation of the cutting plane,

the first volume is given by multiplying the area of the section

given in Art. 80 by ^p. The co-ordinates of the pole of the sec-

tion can be obtained from Art. 106, and the perpendicular on the
2J2 7 2 2 2 2 2

plane from this point is found to be —
: whence

o TO 7 «' 2 •"> t> o

- - - . a'l + o'm + c'W — p 1 • r. 1 . 1

the ratio or the volumes is r,
^~, and it this be

constant it easily follows that either volume is constant.

11. The shadow is the section by the ]Dlane, of the envelop-

ing cone whose vertex is the luminous point.

12. Use Arts. 149, 150.

13. Take the centre of the ball as origin, a plane parallel

to the inclined plane as plane of xy, and a- It, (3 - mt, y - nt as

the co-ordinates of the luminous point at any time.

1 4. yzx + zxy' + xyz — 3a^ ; -— .

15. x'x~^ + y'y~^ + zz~^* = a^.

16. (B(3'+Cy'-a) {By'-^Cz'-x)-{Bfty + CyZ-i {x + a)Y= 0.

X — a y — 1^ _z — y By^ Cz' _
• "^T " ~lB^ " Wy ' (1 + 'IJJaf

"^
(1 -f 'ICaf

~ ""'

19. The equations of the normal at (x, y, z) are

x{x -x) = y{y' - y) = z{z'- z).

Use the condition of Art. 31.

20. Ax + I' + 1=^0. Use equation (3) of Art. 1 02.

21 . a («' - yz) + 13 (y- - zx) + y {z' - xy) = c' : a hyperboloid

of one or two sheets according as a + ^ -f y is positive or negative.
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22. ayz + pzx + yxy = 3a^: a hyperboloid of one or two sheets

according as aj8y is negative or positive.

2 2

23. ix{x' + 7/ + z') + ^^+^^ = 0.

24. The equation of any tangent plane to the cone can be put

into the form Axx' + Byy + Czz = 0, where Ax"^ + By'' + Cz"' = 0,

and if I m _^ n

we get the required result.

25. Use (10) of Art. QS putting —
, , ^^, X, for l, m, n and

reducing. Or else use (1) and (3) of Art. 75.

27. {a — aY + {h — h'Y-\-{G — c')~ = r' + r'' where r, r are the

radii and (a, b, c)
;

(a, h\ c) the co-ordinates of the centres of the

two spheres.

29. Taking the equations of Example 33 of Chapter ii., if

a be the radius of the sphere, the locus required is

(m' + 1 ) cxy —m {a" — c') z = 0.

CHAPTER IX.

2

1. (1) x'y-yx + -{z'-z) = 0.

(2) If we assume z=r sin <j5), the equation of the osculating

plane can be written

2x' cos^ (^ - ?/' sin </) (1 + 2 cos^ <^) -2z +r sin <^ (2 + cos" (^) = 0.

2. Length of arc = Ja' + c' . {6^ — 0^). From the equations

of the curve obtain x" + y" sl^ a function of z: let x' + y' =/ (z).

This is the equation required. Ex. x' + y' = a^.

3. We easily get, if a be the radius of the generating cylinder,

h' = ia' sin=^ ^V^ + «' cot^ a {6^ - O^f = ia' sin^ ^^-^ + I' cos= a,

0—6
if I be the length. Hence, when Hs a maximum, sin -^—^ + ;

and the maximum lensrth = . But this maximum lenofth
cos a °

= a cosec a {0^ - 9^ and 0^-0^= 2n7r ;

2mra b b tan a

sm a cos a Znir
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4. The equations of the curve are

a9 aO
c — ——

\

x = a cos 0, y = a ain 0, z = ^ (€ ^ + € ^)-

5. xA-y + z-\.

g
6. r = a,

<f>
= tan (3 log tan -^ + C ; r, 0,

<f)
being polar co-

ordinates.

-i2/
7. (1) 9/-x' = c. (2) y + a tan"' ''- = c.

X

8. Analytically. Differentiate the equations of the sphere

and ellipsoid, and find the ratios —r'~r'-^~' ^^^ equation
Ct^ Cto CvS

of the plane can then be found, and then the equation (12)

of Art. 68 can be used.

9. (1) cos~^ (cos c^ sin 6) + cos~^ (sin </> sin 0) -- const,

which can be transformed into

(2) cos^ sin Jl- sin^^sin'6^ + sin<5!) sin^ ^1 — cos^0 sin"^ = const.

or (3) X Ja^ -y^ + y V"""
"" ^^ ^ const.

10. e=acl>.

11. By Art. 101, py- , -j-^, -t^ will be proportional to
\Cl^ Q/b Clb

whence

(S-i). (j-i)^ (S-i).

/i_2\if^-« fl_l\l^I^ /^i_^V^^_o
\^^ c'v X ds \c^ a"J y els \d' V) z ds

12. 2 = ^ €^ sin acot s^ wlicrc z is the distance of the point from

the vertex, a the semivertical angle of the cone, (3 the fixed angle,

and 6 the angle made by the plane through the point on the curve

and the axis of the cone, with some fixed i)Uine. The length of curve

, , , -, c n -^^
I

floSinacotfl e,sinacot)3, .

between any two values oi t; = ^ W — € }. At
•^ cos^ ^ ^

the vertex ^= — oo .

13. From the method (>f producing the curve we easily see

that if 8 be tlie arc measured from the point nearest to the vertex,
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r' = c' + s^ Also if the axis of the cone be the axis of a:, x = r cos a

:

70 o
ClOC C COS ot

whence -7-, = 5— . Also the principal normal to the curve
as' r"*

is the normal to the cone at that point (Art. 182). Whence

p —T = ± sin a, and .
'. r^ = ap.

as'

U. (1) «^\ (2) ^1±£!.

2 2

15. X = cos 0, y= sin 0, z^ cO.
a a

16. Take the common tangent to the two curves as axis of x
and the plane of the circle as plane of xy. Then if x^, y^, z^ be the

co-ordinates of a point on the circle at the end of the arc Ss,

and p the radius of the circle

p p \ p/ zp \^p

and if x
, y^, z^ be the co-ordinates of the point on the curve

we get

dx - , d^x ^2 1 ^^^
-8. +1^8.+^^X„=-^Ss+i -jjSs'+ r^-^Ss^+ ...

and similar values for y^, z^. But it can easily be shewn by
Arts. 119, 130 that

dx ^ dy ^ dz ^ d^x _ d^y 1 d^z „

ds ds ' ds ' ds^ ' ds^ /o ds^

whence the square of the distance required becomes

fhs^U/dJ'x IV /d'yy /d'zV)

yiUVV ^\dsO^[ds^)\'

And by differentiating the formula (10) of Art. 129, and (2)

of Art. 118 the required result may be obtained.

17. Prove geometrically from the figure in Art. 127.

18. By Ex. 12 the equations of the curve may be written

x = A tan aec« cos 0, y=^ A tan ae^^ sin $, z= ^c*'^,

where c = sin a cot /3 ; whence p can be obtained by (9) in Art. 129.

When developed the curve is an equiangular spiral.
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CHAPTER X.

1. x^ ^ rf ^ z^ - i^.x + my + nz)' = 1.

2. ^x' + 2/' + Vc' -z- ^ a.

aV 5"y^ cV ^

a* /3^ 7^

5. cr = c", c being the radius, and tlie plane of xy the fixed

plane.

c - ^"
0. xyz -

3^3 .

2 2 7 2 2 2 2

. —^ i + T]r^—. + -o—o = 0, where r' = a" + ?/- + 2;-. The
a^-r"^ }f-T^ <?-r

Wave Surface. See Chapter on Fresnel's Theory of Double

Refraction.

8. The surface x" ^\f -v 2z^ = Ik" \ and the curve x- + 7/ = k%

10. xyz = ^ , where ^Jc^ is the given volume.

2 2 ^2 1

11. aj- + 2/ + ^ = ^ • 12. ^ + p + - = -p

13. a;V 2/' + »^ = (c ± 0^
.2 „ ,2

14. ( ^, + |_„ + ^ 1
)

(«=^Z^ + h"-m' 4- c^^^ - 1 ) = (^o: +my -^nz-l )\

Xa" 0' c J

15. By Art. lOG all the lines in question lie in the polar

plane of (a, /?, y). If a
,

/8', y' be tlic co-ordinates of one point

in which any chord meets the ellipsoid, the line required will be

given by the two equations

xa. yB zy
^

, xa yfS' Zy -

. o + 7^ + 4 = 1, and -, +•-/;-+;= 1.

Tlic condition that this line may be perpendicular to the line

joining (a, ^, y) to (a, (3', y) can bo reduced to the form

(i'-c')<.
^

(c'-«°)|8, («'-6')y
ft
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Also the equation of a plane through the origin and the line

required is

a:(a-a) ?/(/?-/?-) Z (y - Y)
a c

the envelope of which treating a- a, (3 - (3', y - y as parameters
gives us the cone required. That the curve is a parabola can be
shewn because a plane through the origin parallel to the polar
plane of (a, ^, y) can easily be shewn to touch the cone.

CHAPTER XI.

1. If x=f^{t), y=f^{t), z=f^{t) be the equations of the
curve, we have to find the envelope of

{^ -/. {t)Y + {!/-A (tW + {~~ -/. (or

=

<^,

where t is the parameter. The envelope is obtained from the
intersection of the sphere with the normal plane to the curve
at the point t.

2. The equation can be put in the form

_ A' + y + aV) _i{x + y + z)\{x^ + f + z') - f^^7j = c

and if the line x = 7/ = z be taken as axis of z this becomes,
3 /3

by Arts. 25 and 28, —'X— z {x^ + y") = c^, which is a surface

2c^
formed by the revolution of the curve zx'^ = S' ,^ round the axis

of ^. Or, apply Art. 148.

3. a'y^ + Qi?%^ = c'x' ; x = a, y~ + z^ = c^ being the equations of

the circle.

4. See Ex. 11, Chap. vii. for choice of axes,
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7. (1) {x^ + y^)(k-na) + 2a{z-a){lx + my) + {k + na){z-a)-,

the vertex being at the point (0, 0, a) and the plane of the small

circle being Ix + my + nz = k.

(2) Put 2; = in the above.

8. Jx^ + y^ + Jc^ -z^ = a, or

(x' + y' + z' + a'-cy =W {x' + y') (1).

9. The points at which the tangent plane passes through

the origin are given by z = ^- s/a^ — c', that is, they lie in two
ct

horizontal rings. Take one of these points in the plane of zx.

The tangent plane at this point has for its equation

c'
x = z (2).

c
^

Also the equation (1) can be put into the form

{2. 2. 2 / 2 2\12 ^22./422 A / 2 2\2X + y + z - {a — c)Y = 4c y + 4c a; — 4 (cir — c) z

— ^c'y'^ + 4 (ex — z Ja^ — c") {ex + ;:; Ja' — c'),

whence at the points of intersection of (2) with (1)

X +y +z — (c& - c") = ± 2cy.

Hence (2) cuts (1) in two circles. From the symmetry of the

surface the same will be true for all the points.

10. The fixed plane being the plane of yz, and I, m, n the

direction-cosines of AB, the equation of the surface is

(mz — ny)' + {iix — Iz)' + {ly — mxf = k'x^.

11. The conditions are given in Art. 92. See Art. 151.

{a' - kj ^
{b' - ky "^

{c'-ky '

- 7 9 7 ciyz + bzx + cxy
wliere k = aoc .

=

—

'

j
— .

ocyz + cazx + aoxy

1 4. Take y=px and y ^kz-\- q as equations of the gener-

atiug line.

15. (1) A surface of revolution round Oz. (2) A surface

such that all sections by planes through Oz are circles. (3) A
cone whose vertex is 0.

16. (1) A surface produced by the revolution of the lem-

niscate in the plane of %x round Oz. (2) A surface produced
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by the motion of a circle whose centre is and radius is any
radius of the same lemniscate placed in the plane of xy.

17. \-slb' -c^ - - Ja' - 6'>
I -2

:, ) + h-y"" ( -, + -, - ,-,

)

tc a j \c a J ^ \c- a' by

\c a b /

18. The equations of any helix can be written

x = a cos 0, y = a sin 0, z = c9 + y,

and by virtue of the given conditions y and c must be expressible

as functions of a. Hence since a' = ic^ + ?/' and 6 = tan~^ -
, and

-^ X '

7also =— - , we ffet
c c

tan-^ ^^zF{x' + y') +f{x' + y').

The second part easily follows by differentiation.

19. The reflected light forms a cone of the second order, and
the wall on which it falls is parallel to one of its generatino-

lines.

20. If x^, y^, z^; x^, y^, z_^ be the co-ordinates of the
points A, B ; being the origin, the condition that AB subtends a
right angle at is x^x^ + y^y^ + z^z^ = 0. Also the equations of
AB are

x-x, y-y, z- Al

'^'2 5

^,-^2 3/1-2/2 =^l--2'

and from the equations of the straight lines a?,, y^ can be expressed
in terms of z^ and x^

, y^ in terms of z^ . Then eliminating z^

,

between these equations we get a relation between x, y, z.

21. Equation (4) of Art. 148 is evidently the required con-

dition.

X
22. If - —/ (z) be the equation of the surface, the locus

required is

where /, /' are the values of /{z) and /' (z) for the given
value of z.
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23. The equations of any such circle are x^ -^ if a- z^ =1ax
and y = mx, also a must be expressible as a function of m, = -cf{m)

say. The differential equation can be easily deduced.

25. A right conoid, whose directing curve is formed by

folding the curve of sines with its base horizontal round a vertical

cylinder. In the case of qi = 2, the equation becomes

z {x^ + y') = 2cxy

;

and any plane

z — mx + ny + p,

will cut this in a conic section, if

2? (m^ + n^) + Icmn — 0.

The projection of the curve on the plane of xy is

ix^ + 2/^) (wi^ + n') — 2cmn {nx + my) = 0.

CHAPTER XII.

1. 6a--12y- = 9, P^O; 4a' +12/5' = 9, y = 0; impossible

locus.

2x' ?>y^ iz'

2k + T
"^

3^ +~1 "^
4/j + 1

the two values of k are the roots of the quadratic

If ^^^^^^^

—

-+ „7 -V + .7 . T = 9 be either of the surfaces,

S 29

3. Let a be the distance of the point along the axis of x, and
Q O O

_ + ^- + — = 1 one of the surfaces : the locus required is
a' c

2 2X 'ij rJ ^
|_

-^ ^ . = \^
a ax — (a^— h) ax — {a' — c^)

4. At the points of intersection we easily get ax = /3y + a°.

Also the direction-cosines of the normal to the tirst surface at any

such point are easily proved to be proportional to

1_ a a^ 2 2z

a P' {ax-by ^' a.r-b''

while those of the normal to the second are proportional to

2 1 _ ^ _ jgg" 2z

a' ^~^'~ {ax-by ax-b''

and these lines are therefore perpendicular to each other since their

direction-cosines satisfy the requisite condition.
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5. If the two quadrics be B\f + C^ — x and Bif + C^ - x + h^

the coincidence of the foci involves

_1 _±__j ±^ 1 _;
4:B 4:B ' 4(7 IC '

whence also the focal conies will coincide, since

B-C B'-C
'BC ^^'W '

6. At the points where the two quadrics in (5) cut, we have

{B-B')i/+{C-C')z' + h^O,

or 4:BB'y' + 4.CG'z'+ 1=^0,

which is the condition that the tangent planes to the two quad-

rics at {x, 7/, z) should be at right angles.

7. Use Article 161 and equations (2) and (3) of Article 83

applied to the surface of Article 108.

CHAPTER XIII.

Z2 2 2 2 2 2 212 2OCX cay a o z ^

2Jp — a" 2^9 ~ ^^
l^P ~ ^'

where p is the perpendicular from the centre on the tangent

plane. This can be reduced to

212 2

jy^p'^ — {a^ + lf + c^ - r^) 2?p H ^— = 0, where r^ = x^ + y^ + z\

For the umbilici the two roots will be equal. This will require

one of the quantities x*, y ov zto vanish.

2. (1) x—y = z — a.

(2) When xa^ = =*= yW = ^ zc^.

4. (1) Eliminate m between equations (6) and (7) of Art.

171, writing p = h Jl +p^ + q-.

(2) The coefficients of the several powers of m in the

equation (7) of Art. 171 must vanish.

A. G. 18
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5. The two values oi h in (9) of Art. 169 must be equal and
of opposite sign

;

.-. U'(v+w)+V'{w + u) + W'{u+v)-2u'VW-2v'WU-2iv'UV=0.

The points of intersection of the surface with the sphere

111
^ ABC

6. Take the general equation of a quadric and determine
the conditions that it may touch the plane of xij at the origin,

and that sections by planes parallel to that plane may be circles.

IS

7. Using the equation in the last question the locus required

ex + hy + h (z — a) — z = 0.

8. See Ex. 4, Chap. xii. The surface in the question and
the two surfaces

2 2 *> 9
X y z X y ^ ^

can be shewn to cut always at right angles, where /3 and y are

any constants. Hence the intersections of these surfaces with the

given one are its lines of curvature.

At the points of intersection of the first with the given

surface we have ax = /5?/ + 6' a plane ; and by combining this with

tlie given equation, that can be written

- {ax - c") + o {(^U + ^' - c^) + z'' = ax - c",

which is the equation of a sphere. Hence the lines of curvature

are circles : and the plane of any one of them being ax = jSy + b'

always contains the line ax = b^, y = 0.

9. The result follows from the fact that r has the same
value for all tangent lines at the umbilicus.

10. At the points of contact pr has the same value for the

geodesic and the line of cuiwature.

11. The value of pr is the same for the two geodesies through

J* since they each pass through an umbilicus. Hence the value

of r is the same. The tangents to these two geodesies are there-
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fore parallel to the equal radii of the indicatrix, and the tangents

to the lines of curvature being parallel to the axes bisect the

angles between these.

12. Can be proved from 11 by the method of infinitesimals.

13. The geodesic circle cuts all geodesies through the um-
bilicus at right angles. Hence if d, d' be the semidiameters

parallel to the tangent to the geodesic circle and the line through

the umbilicus, and p, p be the semi-axes of the central section

parallel to the tangent plane at the point

1 JL _ i 1 - P' ^^' + h' + c'- r")

a a " p p' a'o'c

Ex. 25, Chap. viii.

27,2 2 212 2ab c a c <, .,
.*.

., ,.> - + ., ,,., =a^ + o^ + c^ - Q".

p'd" p'd

But jt>^<:r^ = aVas can be ascertained from the known co-ordinates

of the umbilici.

14. At any point in the principal section by the plane of yz

the two roots of the equation in (1) can be shewn to be -

a*
P

and — . The former root is the radius of curvature of the prin-
-?^

. .

cipal section : the latter gives the distance along the normal of

the point whose locus is required which can then be worked out

by plane geometry.

15. Taking x^ + y^ = a^ as the equation of the cylinder we

easily get for the geodesies -^ = 0; therefore -^ = c, whence the
Cl/S CIS

curves are helices.

16. s = ^^ sec^ a — c^ , where a is the semi-vertical angle of

the cone, and s the length of the arc from tlie nearest point to the

vertex.

17. If x^ -^rif =f{z) be the equation of the surface it easily

follows from (1) of Art. 182 that for all points in any geodesic line

dy dx
X -y - y -J- = c.
ds '^ ds



276 ANSWERS TO THE EXAMPLES.

And it can easily be proved tliat tlie sine of the angle required

_ c

18. If r =/ {x) be the equation of the surface t^ being if + z'

the required expressions are

t \dx] j ^
f (dl

err V \djc

19. With the usual . notation for an ellipse the product
required is

CD"' GD^ BC"- _CD^
PY ^ ^^~

pb" • pf~ AC '^^ • ^ ^ •

20. The radii of curvature of the principal sections are

r'
7* and : , where r is the focal radius of the point on

r — p sni
(f>

the ellipse which is in contact, </> the angle between that radius

and the tangent, and p the radius of curvature of the ellipse

(Besant on Glissettes, &c.). Hence the sum of the curvatures

_ 2 psin<^_ 2 r(2a-r)_ 1

r r^ T ar'' a

'

21. By Meunier's Theorem.

22. Use the quadratic equation in question (1) of this chapter,

r Ijeing a constant.

23. Prove geometrically from the fact that when the surface

is developed the geodesies become straight lines.

24. Differentiate r^ = x^ + if + z^ twice and use the formulaj (1

)

of Art. 182, (10) of Art. 129, 'and (1) of Art. 100.

25. Use Meunier's Theorem, and (3) of Art. 167.
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2s. Part II. 4th Edition, revised. 2s. Key to Part II. 2s. 6d.

Latin Prose Lessons. By Prof. Church, M.A. 6th Edit. Fcap. 8vo.

2s. 6d.

Latin Exercises and Grammar Papers. By T. Collins, M.A. 5th
Edition. Fcap. 8vo. 2s. 6d.

Unseen Papers in Latin Prose and Verse. With Examination
Questions. By T. Collins, M.A. 3rd Edition. Fcap. 8vo. 2s. fid.

in Greek Prose and Verse. With Examination Questions.

By T. Collins, M.A. 2nd Edition. Fcap. 8vo. 3s.

Tales for Latin Prose Composition. With Notes and Vocabu-
lary. By G. H. "Wells, M.A. 2s.

Latin"Vocabularies for Eepetition. By A. M. M. Stedman, M.A.
Fcap. 8vo. Is. 6d.

Analytical Latin Exercises. By C. P. Mason, B.A. 4th Edit.

Part I., Is. 6d. Part II., 2s. 6d.

Latin Mood Construction, Outlines of. With Exercises. By
the Rev. G. E. C. Casey, M.A., F.L.S., F.G.S. Small post 8vo. Is. fid.

Latin of the E.xercises. Is. fid.

Scala Latina. Elementaiy Latin Exercises. By Kev. J. W.
Davi.^, M.A. New Edition, with Vocabulary. Fcap. 8vo. 2s. fid.

Scala Grseca : a Series of Elementary Greek Exercises. By Kev. J. W.
Davis, M.A., and R. W. Baddeley, M.A. 3rd Edition. Fcap. 8vo. 2s. fid.

G-reek Verse Composition. By G. Preston, M.A. Crown 8vo.4s. 6d.

Greek Particles and their Combinations according to Attic Usage.
A Short Tieatise. By F. A. Paley, M.A. 2s. fid.

By the Kev. P. Frost, M.A., St. John's Colleoe, Cambridge.

Eologae Latinae ; or. First Latin Reading-Book, vrith English Notes
and a Dictionary. New Edition. Fcap. 8vo. 2s. fid.

Materials for Latin Prose Composition. New Edition. Fcap.Svo.
2s. fid. Key, 4s.

A Latin Verse-Book. An Introductory Work on Hexameters and
Pentauietcrs. New Edition. Fcap. 8vo. 3s. Key, 5s.

Analeota Grjeca Minora, with Introductory Sentences, English
Notes.and a Dictionary. New Edition, Fcap.Svo. 3s. 6d.
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Materials for Greek Prose Composition. New Edit. Fcap. 8vo.
3s. 6d. Key, 5s.

Florilegium Poeticum. Elegiac Extracts from Ovid and Tibullus.
New Edition. With Notes. Fcap. 8vo. 3s.

Anthologia Graeca. A Selection of Choice Greek Poetry, with Notes.
By F. St. John Thackeray, ith and Clieaper Edition. 16mo. 4s. 6d.

Anthologia Latina. A Selection of Choice Latin Poetry, from
Naevius to Boethius, with Notes. By Rev. F. St. Jehu Thackeray. Revised
and Cheaper Edition. 16mo. 4s, 6d.

By H. a. Holden, LL.D.
Folionim SilTula. Pai-t I. Passages for Translation into Latin

Eleg-iac and Heroic Verse. 10th Edition. Post 8vo. 7s. 6d.

' Part II. Select Passages for Translation into Latin Lyrio
and Comic Iambic Verse. 3rd Edition. Post 8vo. 5s.

Part in. Select Passages for Translation into Greek Versa.
3rd Edition. Post 8vo. 8s.

Folia SilvulaB, sive Eclogas Poetarum Anglicorum in Latinum et
Graecum conversae. 8vo. Vol. II. 12s.

Folionim Centuriae. Select Passages for Translation into Latin
and Greek Prose. 9th Edition. Post 8vo. 8s.

TRANSLATIONS, SELECTIONS, &c.

*^f* Many of the following books are well adapted for School Prizes.

.aSschylus. Translated into English Prose by F. A. Paley, M.A.
2nd Edition. 8vo. 7s. 3d.

Translated into English Verse by Anna Swanwiek. Post
8vo. 5s.

Homer. The Iliad. Books I. -IV. Translated into English
Hexameter Verse by Henry Smith Wright, B.A. Royal 8vo. 5s.

Horace. The Odes and Carmen Sseculare. In English Verse by
J. Conington, M.A. 9th edition. Fcap. 8vo. 5s. 3d.

The Satires and Epistles. In Enghsh Verse by J. Coning-
ton, M.A. 6th edition. 6s. 6d.

Illustrated from Antique Gems by C. "W. King, M.A. The
text revised with Introduction by H. A. J. Monro, M.A. Large 8vo. 11. Is.

Translations from. By Sir Stephen E. de Vsre, Bart.,

with Latin Text. Cro^-n 8vo. 3s. 6d.

Horace's Odes. Englished and Imitated by various hands. Edited
by C. W. F. Cooper. Crown 8vo. 6s. Sd.

Lusus Intercisi. Verses, Translated and Original, by H. J.

Hodgson, M.A., formerly Fellow of Trinity College, Cambridge. 5s.

Propertius. Verse Translations from Book V., with revised Latin
Text. By F. A. Paley, M.A. Fcap. 8vo. 3s.

Plato. Gorgias. Translated by E. M. Cope, M.A. 8vo. 7s.

Philebus. Translated by F. A. Paley, M.A. Small 8vo. 4«.

Thesetetus. Translatedby F. A.Paley,M.A. Small 8vo. 4s,

Analysis andIndex of the Dialogues. By Dr. Day. PostSvo.Ss.

Reddenda Reddita : Passages from English Poetry, with a Latin
Verse Translation. By F. E. Gretton. Crown 8vo. 6s.

Sabrinae Corolla in Hortulis Regise Scholae Salopiensis contexuerant
tres viri tioribus legendis. Editio tertia. 8vo. 8s. 6d.

Theocritus. In EngUsh Verse, by C. S. Calverley, M.A. New
Edition, revised. Crown 8vo. 7s. 6d.

Translations into English and Latin. By C. S. Calverley, M.A,
PostSvo, 7s. Qd,
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Translations into Greek and Latin Verse. By E. C. Jebb. 4to.

cloth pilt. 10s. 6d.

into English, Latin, and Greek. By E. C. Jebb, M.A

,

H. Jackson, Litt.D., and W. E. Ciin-Gy, M.A. Second Edition. 8s.

Between Whiles. Translations by Eev. B. H. Kennedy, D.D.
2ud Edition, revised. Crown 8vo. 5s.

REFERENCE VOLUMES.
A Latin Grammar. By Albert Harkness. Post 8vo. 6s.

By T. H. Key, M.A. 6th Thousand. Post 8vo. 8s.

A Short Latin Grammar for Schools. By T. H. Key, M.A.
F.R.S. loth Edition. PostSvo. 3s. 6cl.

A Guide to the Choice of Classical Books. By J. B. Mayor, M.A.
8rd Edition, with a Supplementary List. CrowTi 8vo. 4s. Gd. Snpple-

mentaiy List, Is. 6d.

The Theatre of the Greeks. By J. W. Donaldson, D.D. 8th
Edition. Post 8vo. 5s.

Keightley's Mythology of Greece and Italy. 4th Edition. 5s.

A Dictionary of Latin and Greek Quotations. By H. T. Eiley.

Post 8vo. 5s. With Index Verborum, 6s.

A History of Roman Literature. By W. S. Teuffel, Professor at

the University of Tubingen. By W. Wagner, Ph.D. 2 vols. Demy 8vo. 21s.

Student's Guide to the University of Cambridge. 4th Edition

revised. Fcap. Bvo. 6s. 6d. ; or in Parts.—Part 1, 2s. 6d. ; Parts 2 to 9, Is.

each.

CLASSICAL TABLES.
Latin Accidence. By the Eev. P. Frost, M.A. Is.

Latin Versification. Is.

Notabilia Qusedam ; or the Principal Tenses of most of the

Irregular Greek Verbs and Elementary Greek, Latin, and French Con-
struction. New Edition. Is.

Richmond Rules for the Ovidian Distich, &c. By J. Tate,

M.A, Is.

The Principles of Latin Syntax. Is.

Greek Verbs. A Catalogue of "Verbs, Irregular and Defective ; their

leading formations, tenses, and inflexions, with Paradigms for conjugation,

Rules for formation of tenses, &c. &c. By J. S. Baird, T.C.D. 2s. 6d.

Greek Accents (Notes on). By A. Barry, D.D. New Edition. Is.

Homeric Dialect. Its Leading Forms and Peculiarities. By J. S.

Baird, T.C.D. Now Edition, by W. G. Rutherford. Is.

Greek Accidence. By the Eev. P. Frost, M.A. New Edition. U.

CAMBRIDGE MATHEMATICAL SERIES.
Algebra. Choice and Cliance. By W. A. AVhitworth, M.A. 3rd

Edition. 6s.

Euclid. Exercises on Euclid and in Modern Geometry. By
J. McDowell, M.A. 3rd Edition. Cs.

Trigonometry. Plane. By Eev.T.Vyvyan.M.A. 3rd Edit. 3.s\ GJ.

Geometrical Conic Sections. By H. O. Willis, M.A. ]\Ian-

C'h(>stor (rranmiar School. 7^. Cnl.

Conies. Tlift Elementary Geometry of. 4th Edition. By C.Taylor,

D.D. i£.{id.
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Solid Geometry. By W. S. Aldis, M.A. 3rd Edition. 6s.

Rigid D3mamics. By W. S. Aldis, M.A. 4s.

Elementary Dynamics. By W. Garnett, M.A, 3rd Edition. 65,

Dynamics. A Treatise on. By W. H. Besant, D.Sc, F.K.S. 7s. &d.

Heat. An Elementary Treatise. By W. Garnett, M.A. 3rd Edit. •

3s. 6d.

Hydromechanics. By W. H. Besant, M.A., F.E.S. 4th Edition.
Part I. HydrostaticB. 5s,

Mechanics. Problems in Elementary. By W. Walton, M.A. 6s.

CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

A Series of Elementary Treatises for the use of Students in the

Universities, Schools, and Candidates for the Public

Examinations. Fcap. 8vo.

Arithmetic. By Eev.C.Elsee, M.A. Fcap. 8vo. 12th Edit. Bs.6d,

Algebra. By the Kev. C. Elsee, M.A. 6th Edit. 4s.

Arithmetic. By A. Wrigley, M.A. 3s. 6d.

A Progressive Course of Examples. With Answers. By
J. Watson, M.A. 5tli Edition. 2s. 6d.

Algebra. Progressive Course of Examples. By Rev. W. F.
M'Micliael,M.A.,and R. Prowde Smith, M.A. 4tli Edition. 3s.6d. With
Answers. 4s. 6d.

Plane Astronomy, An Introduction to. By P. T. Maii^, M.A.
5th Edition. 4s.

Conic Sections treated Geometrically. By W. H. Besant, M.A.
5th Edition. 4s. Gd. Solution to the Examples. 4s.

Elementary Conic Sections treated Geometrically. By W. H.
Besant, M.A. lln the press.

Conies. Enunciations and Figures. By W. H. Besant, M.A. Is. &d.

Statics, Elementary. By Rev. H. Goodwin, D.D. 2nd Edit. 3s.

Hydrostatics, Elementary. By W. H. Besant, M.A. 11th Edit 4*.

Mensuration, An Elementary Treatise on. By B. T. Moore, M.A Qs.

Newton's Principia, The First Three Sections of, with an Api en-
dix; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th
Edition, by P. T. Main, M.A. 4s.

Optics, Geometrical. With Answers. By W. S. Aldis, M.A. 3s. Od.

Analytical Geometry for Schools. ByT.G.Vyvyan. 4th Edit. 4s. 6iZ.

Greek Testament, Companion to the. By A. C. Barrett, A.M.
5th Edition, revised. Fcap. 8vo. 5s.

B®ok of Common Prayer, An Historical and Explanatory Treatise
on the. By W. G. Humphry, B.D. (Jth Edition. Fcap. 8vo. 2s. 6d.

Music, Text-book of. By H. C. Banister. 12th Edit, revised. 5s.

Concise History of. By Piev. H. G. Bonavia Hunt, B. Mus.
Oxon. 7th Edition revised. 3s. 6d.

ARITHMETIC AND ALGEBRA.
See foregoing Series,
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GEOMETRY AND EUCLID.
Euclid. The Definitions of, with Explanations and Exercises,

and an Appendix of Exercisus on the First Book. By R. "Webb, M.A-
Crown 8vo. Is. Gd.

.. Book I. With Notes and Exercises for the use of Pre-
paratoiy Schools, &c. By Braithwaite Aruett, M.A. Svo. 4s. Ccl.

The First Two Books explained to Beginners. By C. P.

Mason, B.A. 2nd Edition. Fcap. Svo. 2s. 61.

The Enunciations and Figures to Euclid's Elements. By Eev.
J. Brasse, D.D. New Edition. Fcap. Svo. Is. On Cards, in case, 5s.

Without the Figures, 6d.

Exercises on Euclid and in Modem Geometry. By J. McDowell,
B.A. Crown Svo. 3rd Edition revised. 6s.

Geometrical Conic Sections. By H. G, 'Willis, "M.A.. Is. 6(7.

Geometrical Conic Sections. By W. H. Besant, M.A. oth Edit,
4s. 6d. Solution to the Examples. 4s.

Elementary Geometrical Conic Sections. By W. H. Besant,
M.A. [In the jwess.

Elementary Geometry of Conies. By C. Taylor, D.D. 4th Edit.

Svo. Is. 6(J.

An Introduction to Ancient and Modern Geometry of Conies.
By C. Taylor, M.A, Svo. 15s.

Solutions of Geometrical Problems, proposed at St. John's
College from 1830 to 1846. By T. Gaskin, M.A. Svo. 12s.

TRIGONOMETRY.
Trigonometry, Introduction to Plane. By Eev. T. G. Vyvyan,

Charterhouse. 3rd Edition, Cr. Svo. 3s. 6<2,

An Elementary Treatise on Mensuration. By B. T. Moore,
M.A. 5s.

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduction to Analytical Plane Geometry. By W. P.
Turnbiill, M.A. Svo. 12s,

Problems on the Principles of Plane Co-ordinate Geometry.
By W. Walton, M.A. Svo. IGs.

Trilinear Co-ordinates, and Modem Analytical Geometry of
Two Dimensions. By W. A. Whitworth, M.A. Svo. 16.s.

An Elementary Treatise on Solid Geometry. By W. S. Aldia,

M.A. :Jrd Edition revised. Cr. Svo. C>s.

Elementary Treatise on the Differential Calculus. By M.
O'Brien, M.A. Svo. 10s. 6d.

Elliptic Functions, Elementary Treatise on. By A. Cayley, M.A.
Domy Svo. 15s.

MECHANICS & NATURAL PHILOSOPHY.
statics. Elementary. By 11. Goodwm, D.D. Fcap. Svo. 2nd

Edition. 3.s.

Dynamics, A Treatise on Elementary. By W. Garnett, M.A.
Grd Edition. Crown Svo, G:;.
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Dynamics. EigicT. By "W. S. Alclis, M.A. 4s.

Dynamics. A Treatise on. By W. H. Besant, D.Sc.,F.E.S. 7s. 6d.

Elementary Mechanics, Problems in. By \V. Walton, M.A. New
Edition. Cro-mi 8vo. 6s.

Theoretical Mechanics, Problems in. By W. Walton. 2nd Edit.
revised aud enlarged. Demy 8v'0. 16s.

Hydrostatics. ByW.H. Besant, M.A. Fcap. 8vo. 11th. Edition. 4«.

Hydromechanics, A Treatise on. By W. H. Besant, M.A., E.E.S.
8vo. 4tli Edition, revised. Part I. Hydrostatics. 5s.

Optics, Geometrical. By W. S. Aldis, M.A. Fcap. 8vo. 3s. M.
Double Refraction, A Chapter on Fresnel's Theory of. By W. S.

Aldis, M.A. 8vo. 2s.

Heat, An Elementary Treatise on. By W. Garnett, M.A. Crown
8vo. 3rd Edition revised. 3s. 6d.

Newton's Principia, The First Three Sections of, with an Appen-
dix ; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th
Edition. Edited by P. T, Main, M.A. 4s.

Astronomy, An Introduction to Plane. By P. T. Main, M.A.
Fcap. 8vo. cloth. 4s,

Astronomy, Practical and Spherical. By Pi. Main, M.A. 8vo. 14«.

Astronomy, Elementary Chapters on, from the 'Astronomie
Physique' of Biot. By H. Goodwin, D.D. 8vo. 3s. 6d.

Pure Mathematics and Natural Philosophy, A Compendium of
Facts and Formulae in. By G. R. Smalley. 2nd Edition, revised by
J. McDowell, M.A. Fcap. 8vo. 3s. 6d.

Elementary Mathematical Formulae. By the Eev. T. W. Open-
shaw. Is. 6d.

Elementary Course of Mathematics. By H. Goodwin, D.D.
6th Edition. 8vo. 16s.

Problems and Examples, adapted to the * Elementary Course of
Mathematics.' 3rd Edition. 8vo. 5s.

Solutions of Goodwin's Collection of Problems and Examples.
By W. W. Hutt, M.A. 3rd Edition, revised and enlarged. 8vo. 9s.

Mechanics of Construction. With numerous Examples. By
S. Fenwick, F.R.A.S. 8vo. 128.

"^

TECHNOLOGICAL HANDBOOKS.
Edited by H. Trueman Wood, Secretaiy of the

Society of Arts.

1. Dyemg and Tissue Prmting. By W. Crookes, F.R.S. 5s.

2. Glass Manufacture. By Henry Chance, M.A. ; H.J.Powell B A •

and H. G. Harris. 3s. 6d. ' • •>

3. Cotton Manufacture. By Eichard Marsden, Esq., of Man-
chester. Qs. 6d.

4. Chemistry of Coal-Tar Colours. By Prof. Benedikt. Trans,
lated by Dr. Knecht of Bradford. 5s.
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HISTORY, TOPOGRAPHY, &g.

Rome and the Campagna. By R. Burn, M.A. With 85 En-
gravings and 26 Majjs and Plans. With Ajipendix. 4to. 31. 3s.

Old Rome. A Handbook for Travellers. By E. Burn, M.A,
Witli Maps and Plans. Demy 8vo. 10s. 6cl.

Modem Europe. By Dr. T. H. Dyer, 2nd Edition, revised and
continued. 5 vols. Demy 8vo. 21. 12s. Gd.

The History of the Kings of Rome. By Dr. T. H. Dyer. 8vo. 16s.

The History of Pompeii : its Buildings and Antiquities. By
T. H. Dyer. 3rd Edition, brought down to 1874. Post 8vo, 7s. ed.

The City of Rome : its History and Monuments. 2nd Edition
revised by T. H. Dyer. 5s.

Ancient Athens : its History, Topography, and Remains. By
T. H. Dyer. Super-royal 8vo. Cloth. 11. 5s.

The Decline of the Roman Repubhc. By G. Long. 5 vols.

8vo. 14s. each.

A History of England during the Early and Middle Ages. By
C. H. Pearson, M.A. 2nd Edition revised and enlarged. 8vo. Vol. I.

16s. Vol. II. 14s.

Historical Maps of England. By C. H. Pearson. Folio. 3rd
Edition revised. 31s. 6d.

History of England, 1800-15. By Harriet Martineau, with new
and copious Index. 1 vol. 3s. 6d.

History of the Thirty Years' Peace, 1815-46. By Harriet Maj-
tinoaa. 4 vols. 3s. 6J. each.

A Practical Synopsis of English History. By A. Bowes. 4th
Edition. 8vo. 2s.

Lives of the Queens of England. By A. Strickland. Library
Edition, 8 vols. 7s. 6d. each. Cheaper Edition, 6 vols. 5s. each. Abridged
Edition, 1 vol. 6s. 6cl.

Eginhard's Life of Karl the Great (Charlemagne). Translated
with Notes, by W. Glaister, M.A., 13.C.L. Crown 8vo. 4s. 6(1.

Outlines of Ladian History. By A. W. Hughes. Small Post
8vo. 3s. 6d.

The Elements of General History. By Prof. Tytler. New
Edition, brought down to 1874. Small Post 8vo. 3s. (id.

ATLASES.

An Atlas of Classical Geography. 24 Maps. By W. Hughes
and G. Long, M.A. Now Edition. Imperial Svo. 12s. 6ci,

A Grammar-School Atlas of Classical Geography. Ten Maps
Bclocted from the above. New Edition. Imperial 8vo. 5s.

First Classical Maps. By tlie Rev. J. Tate, M.A. 3rd Edition.
Imperial Svo. 7s. 6d.

Standard Library Atlas of Classical Geography. Imp. 8vo. 7s. 6d.
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PHILOLOGY.
WEBSTER'S DICTIONARY OF THE ENGLISH LAN-

GUAGE. With Dr. Mahn's Etymology. 1 vol. 1628 pages, 3000 Illus-
trations. 21s. With Appeudices and 70 additional pages of Illustra-
tions, 1919 pages, 31s. Gd.

• The best practical English Dictionary extant.'—Quarterly Review, 1873.

Prospectuses, mth specimen pages, post free on application.

Richardson's Philological Dictionary of the Enghsh Language.
Combining Explanation with Etymology, and copiously illustrated by
Quotations from the best Authorities. With a Supplement. 2 vols. 4to.
41. Itls. 6d.; half russia, 51. 15s. 6d.: russia, 61. 12s. Supplement separately.
4to. 12s.

An 8vo. Edit, without the Quotations, 15s.; half russia, 20s.; russia, 24s.

Supplementary English Glossary. Containing 12,000 Words and
Meanings occurring in English Literature, not fovind in any other
Dictionai-y. By Rev. T. L. 0. Davies. Demy Svo. 16s.

Folk-Etymology. A Dictionary of Words perverted in Form or
Meaning by False Derivation or Mistaken Analogy. By Rev. A. S. Palmer.
Demy Svo. 21s.

Brief History of the English Language. By Prof. James Hadley,
LL.D., Yale CoUege. Fcap. Svo. Is.

The Elements of the English Language. By E. Adams, Ph.D.
20th Edition. Post Svo. 4s. 6d.

PhUological Essays. By T. H. Key, M.A., F.E.S. Svo. 10s. 6d.

Language, its Origin and Development. By T. H. Key, M.A.,
F.R.S. Svo. 14s.

Synonyms and Antonyms of the English Language. By Arch-
deacon Smith. 2nd Edition. Post Svo. 5s.

Synonyms Discriminated. By Archdeacon Smith. Demy Svo.
2nd Edition revised. 14s.

Bible English. Chapters on Words and Phrases in the Bible and
Prayer Book. By Rev. T. L. O. Davies. os.

The Queen's English. A Manual of Idiom and Usage. By the
late Dean Alford 6th Edition. Fcap. Svo. 5s,

A History of English Rhythms. By Edwin Guest, M.A., D.C.L.,
LL.D. New Edition, by Professor W. "w. Skeat. Demy Svo. ISs.

Etymological Glossary of nearly 2500 EngUsh Words de-
rived from the Greek. By the Rev. E. J. Boyce. Fcap. Svo. 3s. 6d.

A Syriac Grammar. By G. Phillips, D.D. 3rd Edition, enlarged.
8vo. 7s. 6d.

DIVINITY, MORAL PHILOSOPHY, &c.
Novum Testamentum Grsecum, Textus Stephanici, 1550. By

F. H. Scrivener, A.M., LL.D., D.C.L. New Edition. 16mo. 4s. 6d. Also
on Writing Paper, with Wide Margin. Half-bound. 12s.

By the same Author.

Codex BezsB Cantabrigiensis. 4to. 26s.

A Plain Introduction to the Criticism of the New Testament.
With Forty Facsimiles from Ancient Manuscripts. 3rd Edition. Svo. 13s,

Six Lectures on the Text of the New Testament. For English
Readers, Crown Svo. 6s.
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A Gmde to the Textual Criticism of the New Testament.
By the Rev. Edward Miller, M.A. Crown 8vo. 4s.

The New Testament for English Readers. By the late H. Alford,
D.D, Vol. I. Part I. 3rd Edit. 12s. Vol. I. Part II. 2nd Edit. 10s. 6d.

Vol. II. Part I. 2nd Edit. 16s. Vol. II. Part II. 2nd Edit. 16s.

The O-reek Testament. By the late H. Alford, D.D. Vol. I. 6th
Edit. 11. 8.S. Vol. II. eth Edit. 11. 4s. Vol. III. 5th Edit. 18s. Vol. IV.
Part I. 4tli Edit. 18s. Vol. IV. Part II. 4tli Edit. 14s. Vol. IV. 11. 12s.

Companion to the Greek Testament. By A. C. Ban-ett, M.A.
6tli Edition, revised. Ecap. 8vo. 5s.

The Book of Psalms. A New Translation, with Introductions, &c.
By tlieVery Pi,ev. J. J. Stewart Perowne, D.D. 8vo. Vol. I. 5th Edition,

IBs. Vol. II. 5th Edit. 16s.

... Abridged for Schools. 5th Edition. Crown 8vo. 10s. Gd,

History of the Articles of Religion. By C. H. Hardwick. 3rd
Edition. Post 8vo. 5s.

History of the Creeds. By J. K. Lumby, D.D. 2nd Edition.

Crown 8vo. 7s. 6d.

Pearson on the Creed. Carefully printed from an early edition.

With Analysis and Index by E. Walford, M.A. Post 8vo. 5s.

Litui'gies and Offices of the Church, for the use of EngHsh
Eeader.s, in Illustration of the Book of Common Prayer. By the Rev.
Edward Burl)idge, M.A. Crown Svo. 9s.

An Historical and Explanatory Treatise on the Book of
Common Prayer By E,ev. W. G-. Humphry, B.D. Gth Edition, enlarged.

Small Post Svo. 2s. 6d. ; Cheap Edition, Is.

A Commentary on the Gospels, Epistles, and Acts of the
Apostles. By Rev. W. Denton, A.M. New Edition. 7 vols. Svo. ISs.

each, except Vol. II. of the Acts, 14s. Sold separately.

Notes on the Catechism. By Rt. Bev. Bishop Barry. 7th Edit.

Feap. 2s.

Catechetical Huits and Helps. By Rev. E. J. Boyce, M.A. 4th
Edition, revised. Fcap. 2s. 6(1.

Examination Papers on Religious Instruction. By Rev. E. J.

Boyce. Sewed. Is. 6d.

The Winton Church Catechist. Questions and Answers on the
Teaching of the Church Catechism. By the late Rev. J. S. B. Monsell,

LL.D. 4th Edition. Cloth, 3s. ; or in Four Parts, sewed.

The Church Teacher's Manual of Christian Instruction. By
ilev. M. F. Sadler. ;3lth Thousand. 2s. GJ.

Easy Lessons on the Church Catechism, for Sunday Schools.
By Rev. B. T. Barnes. Is. CiJ.

Butler's Analogy of Religion ; with Introduction and Index by
Rev. Dr. Steere. New Edition. Fcap. 3.s. 6(i.

Kent's Commentary on International Law. By J. T. Abdy,
LL.D. New and Cheap Edition. Crown Svo. 10s. 6d.

A Manual of the Roman Civil Law. By G. Leapiugwell, LL.D.
8s'o. 12s.

Essays on some Disputed Questions in Modern International
Law. By T. J. Lawruuco, M.A., LL.M. 2ud Edition revised and eiu

lar-'cd. Post bvo. Us.
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FOREIGN CLASSICS.
A Series for use in Schools, with English Notes, grammatical and

explanatory, and renderings of difficult idiomatic expressions.

Fcap. 8vo.

ScMller's Wallenstein. By Dr. A. Buchheim. 5tli Edit. 5s.

Or tbe Lag'er and Piccolomini, 2s. 6d. Wallenstein' s Tod, 2.s. 6(i.

Maid of Orleans. By Dr. W. Wagner. Is. Qd.

Maria Stuart. By V. Kastner. Is. 6d.

Goethe's Hermann and Dorothea. By E. Bell, M.A., and
E. Wolfel. Is. 6d.

German Ballads, from Uliland, Goethe, and Schiller. By C. L.
Bielefeld. 3rd Edition. Is. 6d.

Charles XII., par Voltaire. By L. Direy. 4th Edition. Is. 6d.

Aventures de Telemaque, par Fenelon. By C. J. Delille. 4th
Edition. 2s, 6d.

Select Fables of La Fontaine. By F.E. A.Gasc. 18th Edit. Is. 6d.

Picciola, by X. B. Saintine. By Dr. Dubuc. 15th Thousand. Is. Qd.

Lamartine's Le Tailleur de Pierres de Saint-Point. Edited,
u-ith Xote?. by J. Bo'ielle, Senior French Master, Dulwicli College. 2nd
Edition. Fcap. 8vo. Is. 6d.

Italian Primer. By Eev. A. C. Clapin, M.A. Fcap. 8vo. Is.

FRENCH CLASS-BOOKS.
French Grammar for Public Schools. By Eev. A. C. Clapin, M.A.

Fcap. 8vo. nth Edition, revised. 2s. 6d,

French Pruner. By Eev. A. C. Clapin, M.A. Fcap. Svo. 6th Edit.
Is.

Primer of French Philology. By Eev. A. C. Clapin. Fcap. Svo.
2nd Edit. Is.

Le Nouveau Tresor; or, French Student's Companion. By
M. E. S. 18th Edition. Fcap. Svo. Is. 6d.

French Examination Papers in Miscellaneous Grammar and
Idioms. Compiled by A. M. M. Stedman, M.A. Cro-mi Svo. 2s. 6d.

Manual of French Prosody. By Arthur Gosset, M.A. Crown
8vo. 3s.

F. E. A. GASC'S FEENCH COUESE.
First French Book. Fcap. Svo. 96th Thousand. Is. 6d.

Second French Book. 42nd Thousand. Fcap. Svo. 2s. Qd.

Key to First and Second French Books. 4tli Edit. Fcp. Svo. 3s. 6c?.

French Fables for Beginners, in Prose, with Index, loth Thousand.
12mo. 2s.

Select Fables of La Fontaine. New Edition. Fcap. Svo. 3s.

Histoires Amusantes et Instructives. With Notes. 15th Thou.
sand. Fcap. Svo. 2s. 6d

Practical Guide to Modem French Conversation. 15th Thou-
sand. Fcap. 8yo. 2s. 6d. ,

French Poetry for the Young. With Notes. 5th Edition, Fcap.
Svo. 2s.



14 George Bell and Sons'

Materials for French Prose Composition; or, Selections from
the best English Prose Writsrs. 17th Thousand. Fcap. 8vo. 4s. 6d.

Key, 6s.

Prosateurs Contemporains. With Notes. 9th Edition, re-

vised. 12mo. 5s.

Le Petit Compagnon; a French Talk-Book for Little Children.
11th Thousand. 16mo. 2s. 6d.

An Improved Modem Pocket Dictionary of the French and
English Languages. 36th Thousand, with Additions. 16mo. Cloth. 4s.

Also in 2 vols, in neat leatherette, 5s.

Modem French-English and English-French Dictionary. 3rd
and Cheaper Edition, revised. In 1 vol. 10s. 6d.

The ABC Tourists' French Interpreter of all Immediate
Wants. By F. E. A. Gasc. Is.

GOMBERT'S FEENCH DRAMA.
Being a Selection of the best Tragedies and Comedies of MoUere,

Racine, Comeille, and Voltaire. With Arguments and Notes by A.
Gombert. New Edition, revised by F. E. A. Gasc. Fcap. 8vo. Is. each

;

sewed, 6d. Contents.
MoLiEEE :—Le Misanthrope. L'Avare. Le Bourgeois Gentilhomme. Le

Tartuffe. Le Malade Imaginaire. Les Femmes Savantes. Les Fourberiea
de Scapin. Les Pr^cieuses Ridicules. L'Ecole des Femmes. L'Ecole des
Maris. Le M^decin malgr^ Lui.

Racine:—Ph^dre. Esther. Athalie. Iphig^nie. Les Plaideui'S. La
Th^baide ; ou, Les Freres Ennemis. Andromaque. Britannicus.

P. CoRNEiLLE :—Le Cid. Horace. Cinna, Polyeucto.

VOLTAiEE :—Zaire.

GERMAN CLASS-BOOKS.
Materials for German Prose Composition. By Dr. Buchheim.

9th Edition. Fcap. 4s. 6d. Key, Parts I. and II., Ss. Parts III. and IV., 4s.

Advanced German Course. Comprising Materials for Trans-
lation, Grammar, and Conversation. By F. Lange, Ph.D., Professor
R. M. A. Woolwich. CroTvn 8vo- Is. 6d.

GERMAN SCHOOL CLASSICS.
Meister Martin, der Kiifner. Erziihlung von E. T. A. Hoffman.

Edited byF. Lange, Ph.D., Professor, RoyalMilitary Academy, Woolwich.
Fcap. 8vo. Is. Gd.

Hans Lange. Schauspiel von Paul Heyse. Edited by A. A.
Macdonell, M.A.. Pli.D., Taj-loriau Teacher, University, Oxford. Autho-
rised Edition. Fcap. 8vo. 2n.

Auf Wache. Novelle von Berthold Auerbach. Der Gefrorene
Kuss. NovoUo von Otto Roqnette. Edited by A. A. Macdonell, M.A.
Axitlioriscd Edition, fcap. 8vo. 2s.

Wortfolge, or Rules and Exercises on the Order of "Words in
GernKiii Sentence?. By Dr. F. Stock. Is. Gd.

A German Grammar for Public Schools. By the Rev. A. C.
Clapin and F. Uoll Mailer. .3rd Edition. Fcap. 2s. 6d.

A German Primer, with Exercises. By Bcv. A. C. Clapin. Is.

Kotzebue's Der Gefangene. With Notes by Dr. W. Stromberg. Is.
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ENGLISH CLASS-BOOKS.
A Brief History of the English Language. By Prof. Jas. Hadley,

LL.D., of Yale College. Fcap. 8vo. Is.

The Elements of the English Language. By E. Adams, Ph.D.
20tli Edition, Post 8vo. 4s. 6d.

The Rudiments of English Grammar and Analysis. By
E. Adams, Ph.D. lotli Thousand. Fcap. 8vo. 2s.

A Concise System of Parsing. By L. E. Adams, B.A. Fcap. 8vo.
Is. 6d.

By C. P. Mason, Fellow of Univ. Coll. London.

First Notions of Grammar for Young Learners. Fcap. 8vo.
21st Thousand. Cloth. 8d.

First Steps in English Grammar for Junior Classes. Demy
ISmo. 38th Thousand. Is.

Outlines of English Grammar for the use of Junior Classes.
53rd Thousand. Crown Bvo. 2s.

English Grammar, including the Principles of Grammatical
Analysis. 28th Edition. 110th Thousand. Crown 8vo. 3s. 6d.

A Shorter English Grammar, with copious Exercises. 21st Thou-
sand. Crown 8to. 3s. 6d.

English Grammar Practice, being the Exercises separately. Is.

Code Standard Grammars. Parts I. and II. 2d. each. Parts III,,

ly., and v., 3d. each,

Practical Hints on Teaching. By Kev. J. Menet, M.A. 6th Edit.
revised. Crown 8vo. cloth, 2s. 6d. ; paper, 2s.

How to Earn the Merit Grant. A Manual of School Manage-
ment. By H. Major, B.A., B.Sc. 2nd Edit, revised. Part I. Infant
School, 3s, Part II. 4s. Complete, 6s.

Test Lessons in Dictation. 3rd Edition. Paper cover, Is. M.

Drawing Copies. By P. H. Delamotte. Oblong 8vo. 12s. Sold
also in parts at Is. each.

Poetry for the Schoolroom. New Edition. Fcap. 8vo. Is. 6i.

The Botanist's Pocket-Book. With a copious Index. By W. E.
Hayward. 4th Edit, revised. Crown 8vo. cloth limp, 4s. 6d.

Experimental Chemistry, founded on the Work of Dr. Stockhardt.

By C. W. Heaton. Post 8vo. 5s,

Picture School-Books. In Simple Language, with numerous
Illustrations. Royal 16mo.

The Infant's Primer. 3d.—School Primer. 6d.—School Reader. By J
^illeard. Is.—Poetry Book for Schools. Is.—The Life of Joseph. 1^.—The
Scripture Parables. By the Rev. J. E. Clarke. Is.—The Scripture Miracles.

By the Rev. J. E. Clarke. Is.—The New Testament History. By the Rev.
J. G. Wood, M.A. Is.—The Old Testament History. By the Rev. J. G.
Wood, M.A. Is.—The Story of Bunyan's Pilgrim's Progress. Is.—The Life

of Christopher Columbus. By Sarah Crompton. Js.—The Life of Martin
Luther, By Sarah Crompton, Is,
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BOOKS FOR YOUNG READERS.
A Series ofReadingBooks designed tofacilitate the axquisition ofthepoicer

ofReading by very young Children. In 9 vols, limp cloth, Qd. each.

The Old Boathouse. Bell and Fan ; or, A Cold Dip.

Tot and the Cat. A Bit of Cake. The Jay. The
Black lien's ]S'cst. Tom and Ned. Mrs. Bee.

The Cat and the Hen. Sam and his Dog Red-leg.
Bob and Tom Lee. A Wreck.

The New-born Lamb. The Rosewood Box. Poor
Fan. Sheep Dog.

The Story of Three Monkeys.
Story of a Cat. Told by Herself.

The Blind Boy. The Mute Giii. A New Tale of
Babes in a Wood. .

The Dey and the Knight. The New Bank Note.
\

The Royal Visit. A Kinsr's Walk on a AViuter's Day. /

Queen Bee and Busy Bee. '

Gull's Crag.

A First Book of Geography. By the Kev. C. A. Johns
Illustrated. Double size, Is,

f

BELL'S READING-BOOKS.
FOR SCHOOLS AND PAROCHIAL LIBRARIES.

The popularity of the ' Books for Young Readers ' is a suflRcient proof that
teachers and pupils alike approve of the use of interesting stories, in place of

the dry comlnnation of letters and syllables, of which elementary reading-Vjooks
generally consist. The Publishers have therefore thought it advisable to extend
the application of this principle to books adapted for more advanced readers.

NolO Ready. Post 8vo. Strongly hound in cloth, Is. each.

Grimm's German Tales. (Selected.)

Andersen's Danish Tales. Illustrated. (Selected.)

Great Englishmen. Short Lives for Young Children.

Great EngUshwomen. Short Lives of.

Great Scotsmen. Short Lives of.

Masterman Ready. ByCapt. Marryat. Illus. (Abgd.)

Friends in Fur and Feathers. By Gwynfryn.
Parables from Nature. (Selected.) ByMrs. Gatty.

Lamb's Tales from Shakespeare. (Selected.)

Edgeworth's Tales. (A Selection.)

Gulliver's Travels. (Abridged.)

Robinson Crusoe. Illustrated.

Arabian Nights. (A Selection Rewritten.)

Light of Truth. By Mrs. Gatty.

The Vicar of Wakefield.
Settlers in Canada. By Capt. Marryat. (Abridged.)

Marie : Glimpses of Life in France, By A. R. Ellis.

Poetry for Boys. Selected by D. Munro.
Southey's Life of Nelson. (Abridged.)

Life ofthe Duke of Wellington, withMaps and Plans.

Sir Roger de Coverley and other Essays from the

Tales of the Coast. By J. Runciman.
ODu-rs in prcimration.

London : Printed by Steanqewats & Sons, Tower Street, St. Martin's Laue.
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